The rewrite relation of the following TRS is considered.
c(c(x1)) | → | a(a(a(b(b(b(x1)))))) | (1) |
b(b(b(a(x1)))) | → | b(b(b(b(b(b(b(b(x1)))))))) | (2) |
b(b(c(c(x1)))) | → | c(c(c(a(a(a(a(x1))))))) | (3) |
We split R in the relative problem D/R-D and R-D, where the rules D
c(c(x1)) | → | a(a(a(b(b(b(x1)))))) | (1) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(c(x1))) | → | c(a(a(a(b(b(b(x1))))))) | (4) |
b(c(c(x1))) | → | b(a(a(a(b(b(b(x1))))))) | (5) |
a(c(c(x1))) | → | a(a(a(a(b(b(b(x1))))))) | (6) |
c(b(b(b(a(x1))))) | → | c(b(b(b(b(b(b(b(b(x1))))))))) | (7) |
c(b(b(c(c(x1))))) | → | c(c(c(c(a(a(a(a(x1)))))))) | (8) |
b(b(b(b(a(x1))))) | → | b(b(b(b(b(b(b(b(b(x1))))))))) | (9) |
b(b(b(c(c(x1))))) | → | b(c(c(c(a(a(a(a(x1)))))))) | (10) |
a(b(b(b(a(x1))))) | → | a(b(b(b(b(b(b(b(b(x1))))))))) | (11) |
a(b(b(c(c(x1))))) | → | a(c(c(c(a(a(a(a(x1)))))))) | (12) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(c(c(x1)))) | → | c(c(a(a(a(b(b(b(x1)))))))) | (13) |
c(b(c(c(x1)))) | → | c(b(a(a(a(b(b(b(x1)))))))) | (14) |
c(a(c(c(x1)))) | → | c(a(a(a(a(b(b(b(x1)))))))) | (15) |
b(c(c(c(x1)))) | → | b(c(a(a(a(b(b(b(x1)))))))) | (16) |
b(b(c(c(x1)))) | → | b(b(a(a(a(b(b(b(x1)))))))) | (17) |
b(a(c(c(x1)))) | → | b(a(a(a(a(b(b(b(x1)))))))) | (18) |
a(c(c(c(x1)))) | → | a(c(a(a(a(b(b(b(x1)))))))) | (19) |
a(b(c(c(x1)))) | → | a(b(a(a(a(b(b(b(x1)))))))) | (20) |
a(a(c(c(x1)))) | → | a(a(a(a(a(b(b(b(x1)))))))) | (21) |
c(c(b(b(b(a(x1)))))) | → | c(c(b(b(b(b(b(b(b(b(x1)))))))))) | (22) |
c(c(b(b(c(c(x1)))))) | → | c(c(c(c(c(a(a(a(a(x1))))))))) | (23) |
c(b(b(b(b(a(x1)))))) | → | c(b(b(b(b(b(b(b(b(b(x1)))))))))) | (24) |
c(b(b(b(c(c(x1)))))) | → | c(b(c(c(c(a(a(a(a(x1))))))))) | (25) |
c(a(b(b(b(a(x1)))))) | → | c(a(b(b(b(b(b(b(b(b(x1)))))))))) | (26) |
c(a(b(b(c(c(x1)))))) | → | c(a(c(c(c(a(a(a(a(x1))))))))) | (27) |
b(c(b(b(b(a(x1)))))) | → | b(c(b(b(b(b(b(b(b(b(x1)))))))))) | (28) |
b(c(b(b(c(c(x1)))))) | → | b(c(c(c(c(a(a(a(a(x1))))))))) | (29) |
b(b(b(b(b(a(x1)))))) | → | b(b(b(b(b(b(b(b(b(b(x1)))))))))) | (30) |
b(b(b(b(c(c(x1)))))) | → | b(b(c(c(c(a(a(a(a(x1))))))))) | (31) |
b(a(b(b(b(a(x1)))))) | → | b(a(b(b(b(b(b(b(b(b(x1)))))))))) | (32) |
b(a(b(b(c(c(x1)))))) | → | b(a(c(c(c(a(a(a(a(x1))))))))) | (33) |
a(c(b(b(b(a(x1)))))) | → | a(c(b(b(b(b(b(b(b(b(x1)))))))))) | (34) |
a(c(b(b(c(c(x1)))))) | → | a(c(c(c(c(a(a(a(a(x1))))))))) | (35) |
a(b(b(b(b(a(x1)))))) | → | a(b(b(b(b(b(b(b(b(b(x1)))))))))) | (36) |
a(b(b(b(c(c(x1)))))) | → | a(b(c(c(c(a(a(a(a(x1))))))))) | (37) |
a(a(b(b(b(a(x1)))))) | → | a(a(b(b(b(b(b(b(b(b(x1)))))))))) | (38) |
a(a(b(b(c(c(x1)))))) | → | a(a(c(c(c(a(a(a(a(x1))))))))) | (39) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(c(c(c(x1))))) | → | c(c(c(a(a(a(b(b(b(x1))))))))) | (40) |
c(c(b(c(c(x1))))) | → | c(c(b(a(a(a(b(b(b(x1))))))))) | (41) |
c(c(a(c(c(x1))))) | → | c(c(a(a(a(a(b(b(b(x1))))))))) | (42) |
c(b(c(c(c(x1))))) | → | c(b(c(a(a(a(b(b(b(x1))))))))) | (43) |
c(b(b(c(c(x1))))) | → | c(b(b(a(a(a(b(b(b(x1))))))))) | (44) |
c(b(a(c(c(x1))))) | → | c(b(a(a(a(a(b(b(b(x1))))))))) | (45) |
c(a(c(c(c(x1))))) | → | c(a(c(a(a(a(b(b(b(x1))))))))) | (46) |
c(a(b(c(c(x1))))) | → | c(a(b(a(a(a(b(b(b(x1))))))))) | (47) |
c(a(a(c(c(x1))))) | → | c(a(a(a(a(a(b(b(b(x1))))))))) | (48) |
b(c(c(c(c(x1))))) | → | b(c(c(a(a(a(b(b(b(x1))))))))) | (49) |
b(c(b(c(c(x1))))) | → | b(c(b(a(a(a(b(b(b(x1))))))))) | (50) |
b(c(a(c(c(x1))))) | → | b(c(a(a(a(a(b(b(b(x1))))))))) | (51) |
b(b(c(c(c(x1))))) | → | b(b(c(a(a(a(b(b(b(x1))))))))) | (52) |
b(b(b(c(c(x1))))) | → | b(b(b(a(a(a(b(b(b(x1))))))))) | (53) |
b(b(a(c(c(x1))))) | → | b(b(a(a(a(a(b(b(b(x1))))))))) | (54) |
b(a(c(c(c(x1))))) | → | b(a(c(a(a(a(b(b(b(x1))))))))) | (55) |
b(a(b(c(c(x1))))) | → | b(a(b(a(a(a(b(b(b(x1))))))))) | (56) |
b(a(a(c(c(x1))))) | → | b(a(a(a(a(a(b(b(b(x1))))))))) | (57) |
a(c(c(c(c(x1))))) | → | a(c(c(a(a(a(b(b(b(x1))))))))) | (58) |
a(c(b(c(c(x1))))) | → | a(c(b(a(a(a(b(b(b(x1))))))))) | (59) |
a(c(a(c(c(x1))))) | → | a(c(a(a(a(a(b(b(b(x1))))))))) | (60) |
a(b(c(c(c(x1))))) | → | a(b(c(a(a(a(b(b(b(x1))))))))) | (61) |
a(b(b(c(c(x1))))) | → | a(b(b(a(a(a(b(b(b(x1))))))))) | (62) |
a(b(a(c(c(x1))))) | → | a(b(a(a(a(a(b(b(b(x1))))))))) | (63) |
a(a(c(c(c(x1))))) | → | a(a(c(a(a(a(b(b(b(x1))))))))) | (64) |
a(a(b(c(c(x1))))) | → | a(a(b(a(a(a(b(b(b(x1))))))))) | (65) |
a(a(a(c(c(x1))))) | → | a(a(a(a(a(a(b(b(b(x1))))))))) | (66) |
c(c(c(b(b(b(a(x1))))))) | → | c(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (67) |
c(c(c(b(b(c(c(x1))))))) | → | c(c(c(c(c(c(a(a(a(a(x1)))))))))) | (68) |
c(c(b(b(b(b(a(x1))))))) | → | c(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (69) |
c(c(b(b(b(c(c(x1))))))) | → | c(c(b(c(c(c(a(a(a(a(x1)))))))))) | (70) |
c(c(a(b(b(b(a(x1))))))) | → | c(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (71) |
c(c(a(b(b(c(c(x1))))))) | → | c(c(a(c(c(c(a(a(a(a(x1)))))))))) | (72) |
c(b(c(b(b(b(a(x1))))))) | → | c(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (73) |
c(b(c(b(b(c(c(x1))))))) | → | c(b(c(c(c(c(a(a(a(a(x1)))))))))) | (74) |
c(b(b(b(b(b(a(x1))))))) | → | c(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (75) |
c(b(b(b(b(c(c(x1))))))) | → | c(b(b(c(c(c(a(a(a(a(x1)))))))))) | (76) |
c(b(a(b(b(b(a(x1))))))) | → | c(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (77) |
c(b(a(b(b(c(c(x1))))))) | → | c(b(a(c(c(c(a(a(a(a(x1)))))))))) | (78) |
c(a(c(b(b(b(a(x1))))))) | → | c(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (79) |
c(a(c(b(b(c(c(x1))))))) | → | c(a(c(c(c(c(a(a(a(a(x1)))))))))) | (80) |
c(a(b(b(b(b(a(x1))))))) | → | c(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (81) |
c(a(b(b(b(c(c(x1))))))) | → | c(a(b(c(c(c(a(a(a(a(x1)))))))))) | (82) |
c(a(a(b(b(b(a(x1))))))) | → | c(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (83) |
c(a(a(b(b(c(c(x1))))))) | → | c(a(a(c(c(c(a(a(a(a(x1)))))))))) | (84) |
b(c(c(b(b(b(a(x1))))))) | → | b(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (85) |
b(c(c(b(b(c(c(x1))))))) | → | b(c(c(c(c(c(a(a(a(a(x1)))))))))) | (86) |
b(c(b(b(b(b(a(x1))))))) | → | b(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (87) |
b(c(b(b(b(c(c(x1))))))) | → | b(c(b(c(c(c(a(a(a(a(x1)))))))))) | (88) |
b(c(a(b(b(b(a(x1))))))) | → | b(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (89) |
b(c(a(b(b(c(c(x1))))))) | → | b(c(a(c(c(c(a(a(a(a(x1)))))))))) | (90) |
b(b(c(b(b(b(a(x1))))))) | → | b(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (91) |
b(b(c(b(b(c(c(x1))))))) | → | b(b(c(c(c(c(a(a(a(a(x1)))))))))) | (92) |
b(b(b(b(b(b(a(x1))))))) | → | b(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (93) |
b(b(b(b(b(c(c(x1))))))) | → | b(b(b(c(c(c(a(a(a(a(x1)))))))))) | (94) |
b(b(a(b(b(b(a(x1))))))) | → | b(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (95) |
b(b(a(b(b(c(c(x1))))))) | → | b(b(a(c(c(c(a(a(a(a(x1)))))))))) | (96) |
b(a(c(b(b(b(a(x1))))))) | → | b(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (97) |
b(a(c(b(b(c(c(x1))))))) | → | b(a(c(c(c(c(a(a(a(a(x1)))))))))) | (98) |
b(a(b(b(b(b(a(x1))))))) | → | b(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (99) |
b(a(b(b(b(c(c(x1))))))) | → | b(a(b(c(c(c(a(a(a(a(x1)))))))))) | (100) |
b(a(a(b(b(b(a(x1))))))) | → | b(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (101) |
b(a(a(b(b(c(c(x1))))))) | → | b(a(a(c(c(c(a(a(a(a(x1)))))))))) | (102) |
a(c(c(b(b(b(a(x1))))))) | → | a(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (103) |
a(c(c(b(b(c(c(x1))))))) | → | a(c(c(c(c(c(a(a(a(a(x1)))))))))) | (104) |
a(c(b(b(b(b(a(x1))))))) | → | a(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (105) |
a(c(b(b(b(c(c(x1))))))) | → | a(c(b(c(c(c(a(a(a(a(x1)))))))))) | (106) |
a(c(a(b(b(b(a(x1))))))) | → | a(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (107) |
a(c(a(b(b(c(c(x1))))))) | → | a(c(a(c(c(c(a(a(a(a(x1)))))))))) | (108) |
a(b(c(b(b(b(a(x1))))))) | → | a(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (109) |
a(b(c(b(b(c(c(x1))))))) | → | a(b(c(c(c(c(a(a(a(a(x1)))))))))) | (110) |
a(b(b(b(b(b(a(x1))))))) | → | a(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (111) |
a(b(b(b(b(c(c(x1))))))) | → | a(b(b(c(c(c(a(a(a(a(x1)))))))))) | (112) |
a(b(a(b(b(b(a(x1))))))) | → | a(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (113) |
a(b(a(b(b(c(c(x1))))))) | → | a(b(a(c(c(c(a(a(a(a(x1)))))))))) | (114) |
a(a(c(b(b(b(a(x1))))))) | → | a(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (115) |
a(a(c(b(b(c(c(x1))))))) | → | a(a(c(c(c(c(a(a(a(a(x1)))))))))) | (116) |
a(a(b(b(b(b(a(x1))))))) | → | a(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (117) |
a(a(b(b(b(c(c(x1))))))) | → | a(a(b(c(c(c(a(a(a(a(x1)))))))))) | (118) |
a(a(a(b(b(b(a(x1))))))) | → | a(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (119) |
a(a(a(b(b(c(c(x1))))))) | → | a(a(a(c(c(c(a(a(a(a(x1)))))))))) | (120) |
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
[c(x1)] | = | 3x1 + 0 |
[b(x1)] | = | 3x1 + 1 |
[a(x1)] | = | 3x1 + 2 |
There are 2187 ruless (increase limit for explicit display).
[c0(x1)] | = |
x1 +
|
||||
[c9(x1)] | = |
x1 +
|
||||
[c18(x1)] | = |
x1 +
|
||||
[c3(x1)] | = |
x1 +
|
||||
[c12(x1)] | = |
x1 +
|
||||
[c21(x1)] | = |
x1 +
|
||||
[c6(x1)] | = |
x1 +
|
||||
[c15(x1)] | = |
x1 +
|
||||
[c24(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c10(x1)] | = |
x1 +
|
||||
[c19(x1)] | = |
x1 +
|
||||
[c4(x1)] | = |
x1 +
|
||||
[c13(x1)] | = |
x1 +
|
||||
[c22(x1)] | = |
x1 +
|
||||
[c7(x1)] | = |
x1 +
|
||||
[c16(x1)] | = |
x1 +
|
||||
[c25(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[c11(x1)] | = |
x1 +
|
||||
[c20(x1)] | = |
x1 +
|
||||
[c5(x1)] | = |
x1 +
|
||||
[c14(x1)] | = |
x1 +
|
||||
[c23(x1)] | = |
x1 +
|
||||
[c8(x1)] | = |
x1 +
|
||||
[c17(x1)] | = |
x1 +
|
||||
[c26(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b9(x1)] | = |
x1 +
|
||||
[b18(x1)] | = |
x1 +
|
||||
[b3(x1)] | = |
x1 +
|
||||
[b12(x1)] | = |
x1 +
|
||||
[b21(x1)] | = |
x1 +
|
||||
[b6(x1)] | = |
x1 +
|
||||
[b15(x1)] | = |
x1 +
|
||||
[b24(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b10(x1)] | = |
x1 +
|
||||
[b19(x1)] | = |
x1 +
|
||||
[b4(x1)] | = |
x1 +
|
||||
[b13(x1)] | = |
x1 +
|
||||
[b22(x1)] | = |
x1 +
|
||||
[b7(x1)] | = |
x1 +
|
||||
[b16(x1)] | = |
x1 +
|
||||
[b25(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[b11(x1)] | = |
x1 +
|
||||
[b20(x1)] | = |
x1 +
|
||||
[b5(x1)] | = |
x1 +
|
||||
[b14(x1)] | = |
x1 +
|
||||
[b23(x1)] | = |
x1 +
|
||||
[b8(x1)] | = |
x1 +
|
||||
[b17(x1)] | = |
x1 +
|
||||
[b26(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a9(x1)] | = |
x1 +
|
||||
[a18(x1)] | = |
x1 +
|
||||
[a3(x1)] | = |
x1 +
|
||||
[a12(x1)] | = |
x1 +
|
||||
[a21(x1)] | = |
x1 +
|
||||
[a6(x1)] | = |
x1 +
|
||||
[a15(x1)] | = |
x1 +
|
||||
[a24(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a10(x1)] | = |
x1 +
|
||||
[a19(x1)] | = |
x1 +
|
||||
[a4(x1)] | = |
x1 +
|
||||
[a13(x1)] | = |
x1 +
|
||||
[a22(x1)] | = |
x1 +
|
||||
[a7(x1)] | = |
x1 +
|
||||
[a16(x1)] | = |
x1 +
|
||||
[a25(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[a11(x1)] | = |
x1 +
|
||||
[a20(x1)] | = |
x1 +
|
||||
[a5(x1)] | = |
x1 +
|
||||
[a14(x1)] | = |
x1 +
|
||||
[a23(x1)] | = |
x1 +
|
||||
[a8(x1)] | = |
x1 +
|
||||
[a17(x1)] | = |
x1 +
|
||||
[a26(x1)] | = |
x1 +
|
There are 2159 ruless (increase limit for explicit display).
There are no rules in the TRS. Hence, it is terminating.
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(b(b(b(a(x1))))) | → | c(b(b(b(b(b(b(b(b(x1))))))))) | (7) |
c(b(b(c(c(x1))))) | → | c(c(c(c(a(a(a(a(x1)))))))) | (8) |
b(b(b(b(a(x1))))) | → | b(b(b(b(b(b(b(b(b(x1))))))))) | (9) |
b(b(b(c(c(x1))))) | → | b(c(c(c(a(a(a(a(x1)))))))) | (10) |
a(b(b(b(a(x1))))) | → | a(b(b(b(b(b(b(b(b(x1))))))))) | (11) |
a(b(b(c(c(x1))))) | → | a(c(c(c(a(a(a(a(x1)))))))) | (12) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(b(b(b(a(x1)))))) | → | c(c(b(b(b(b(b(b(b(b(x1)))))))))) | (22) |
c(c(b(b(c(c(x1)))))) | → | c(c(c(c(c(a(a(a(a(x1))))))))) | (23) |
c(b(b(b(b(a(x1)))))) | → | c(b(b(b(b(b(b(b(b(b(x1)))))))))) | (24) |
c(b(b(b(c(c(x1)))))) | → | c(b(c(c(c(a(a(a(a(x1))))))))) | (25) |
c(a(b(b(b(a(x1)))))) | → | c(a(b(b(b(b(b(b(b(b(x1)))))))))) | (26) |
c(a(b(b(c(c(x1)))))) | → | c(a(c(c(c(a(a(a(a(x1))))))))) | (27) |
b(c(b(b(b(a(x1)))))) | → | b(c(b(b(b(b(b(b(b(b(x1)))))))))) | (28) |
b(c(b(b(c(c(x1)))))) | → | b(c(c(c(c(a(a(a(a(x1))))))))) | (29) |
b(b(b(b(b(a(x1)))))) | → | b(b(b(b(b(b(b(b(b(b(x1)))))))))) | (30) |
b(b(b(b(c(c(x1)))))) | → | b(b(c(c(c(a(a(a(a(x1))))))))) | (31) |
b(a(b(b(b(a(x1)))))) | → | b(a(b(b(b(b(b(b(b(b(x1)))))))))) | (32) |
b(a(b(b(c(c(x1)))))) | → | b(a(c(c(c(a(a(a(a(x1))))))))) | (33) |
a(c(b(b(b(a(x1)))))) | → | a(c(b(b(b(b(b(b(b(b(x1)))))))))) | (34) |
a(c(b(b(c(c(x1)))))) | → | a(c(c(c(c(a(a(a(a(x1))))))))) | (35) |
a(b(b(b(b(a(x1)))))) | → | a(b(b(b(b(b(b(b(b(b(x1)))))))))) | (36) |
a(b(b(b(c(c(x1)))))) | → | a(b(c(c(c(a(a(a(a(x1))))))))) | (37) |
a(a(b(b(b(a(x1)))))) | → | a(a(b(b(b(b(b(b(b(b(x1)))))))))) | (38) |
a(a(b(b(c(c(x1)))))) | → | a(a(c(c(c(a(a(a(a(x1))))))))) | (39) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(c(b(b(b(a(x1))))))) | → | c(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (67) |
c(c(c(b(b(c(c(x1))))))) | → | c(c(c(c(c(c(a(a(a(a(x1)))))))))) | (68) |
c(c(b(b(b(b(a(x1))))))) | → | c(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (69) |
c(c(b(b(b(c(c(x1))))))) | → | c(c(b(c(c(c(a(a(a(a(x1)))))))))) | (70) |
c(c(a(b(b(b(a(x1))))))) | → | c(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (71) |
c(c(a(b(b(c(c(x1))))))) | → | c(c(a(c(c(c(a(a(a(a(x1)))))))))) | (72) |
c(b(c(b(b(b(a(x1))))))) | → | c(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (73) |
c(b(c(b(b(c(c(x1))))))) | → | c(b(c(c(c(c(a(a(a(a(x1)))))))))) | (74) |
c(b(b(b(b(b(a(x1))))))) | → | c(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (75) |
c(b(b(b(b(c(c(x1))))))) | → | c(b(b(c(c(c(a(a(a(a(x1)))))))))) | (76) |
c(b(a(b(b(b(a(x1))))))) | → | c(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (77) |
c(b(a(b(b(c(c(x1))))))) | → | c(b(a(c(c(c(a(a(a(a(x1)))))))))) | (78) |
c(a(c(b(b(b(a(x1))))))) | → | c(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (79) |
c(a(c(b(b(c(c(x1))))))) | → | c(a(c(c(c(c(a(a(a(a(x1)))))))))) | (80) |
c(a(b(b(b(b(a(x1))))))) | → | c(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (81) |
c(a(b(b(b(c(c(x1))))))) | → | c(a(b(c(c(c(a(a(a(a(x1)))))))))) | (82) |
c(a(a(b(b(b(a(x1))))))) | → | c(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (83) |
c(a(a(b(b(c(c(x1))))))) | → | c(a(a(c(c(c(a(a(a(a(x1)))))))))) | (84) |
b(c(c(b(b(b(a(x1))))))) | → | b(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (85) |
b(c(c(b(b(c(c(x1))))))) | → | b(c(c(c(c(c(a(a(a(a(x1)))))))))) | (86) |
b(c(b(b(b(b(a(x1))))))) | → | b(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (87) |
b(c(b(b(b(c(c(x1))))))) | → | b(c(b(c(c(c(a(a(a(a(x1)))))))))) | (88) |
b(c(a(b(b(b(a(x1))))))) | → | b(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (89) |
b(c(a(b(b(c(c(x1))))))) | → | b(c(a(c(c(c(a(a(a(a(x1)))))))))) | (90) |
b(b(c(b(b(b(a(x1))))))) | → | b(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (91) |
b(b(c(b(b(c(c(x1))))))) | → | b(b(c(c(c(c(a(a(a(a(x1)))))))))) | (92) |
b(b(b(b(b(b(a(x1))))))) | → | b(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (93) |
b(b(b(b(b(c(c(x1))))))) | → | b(b(b(c(c(c(a(a(a(a(x1)))))))))) | (94) |
b(b(a(b(b(b(a(x1))))))) | → | b(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (95) |
b(b(a(b(b(c(c(x1))))))) | → | b(b(a(c(c(c(a(a(a(a(x1)))))))))) | (96) |
b(a(c(b(b(b(a(x1))))))) | → | b(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (97) |
b(a(c(b(b(c(c(x1))))))) | → | b(a(c(c(c(c(a(a(a(a(x1)))))))))) | (98) |
b(a(b(b(b(b(a(x1))))))) | → | b(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (99) |
b(a(b(b(b(c(c(x1))))))) | → | b(a(b(c(c(c(a(a(a(a(x1)))))))))) | (100) |
b(a(a(b(b(b(a(x1))))))) | → | b(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (101) |
b(a(a(b(b(c(c(x1))))))) | → | b(a(a(c(c(c(a(a(a(a(x1)))))))))) | (102) |
a(c(c(b(b(b(a(x1))))))) | → | a(c(c(b(b(b(b(b(b(b(b(x1))))))))))) | (103) |
a(c(c(b(b(c(c(x1))))))) | → | a(c(c(c(c(c(a(a(a(a(x1)))))))))) | (104) |
a(c(b(b(b(b(a(x1))))))) | → | a(c(b(b(b(b(b(b(b(b(b(x1))))))))))) | (105) |
a(c(b(b(b(c(c(x1))))))) | → | a(c(b(c(c(c(a(a(a(a(x1)))))))))) | (106) |
a(c(a(b(b(b(a(x1))))))) | → | a(c(a(b(b(b(b(b(b(b(b(x1))))))))))) | (107) |
a(c(a(b(b(c(c(x1))))))) | → | a(c(a(c(c(c(a(a(a(a(x1)))))))))) | (108) |
a(b(c(b(b(b(a(x1))))))) | → | a(b(c(b(b(b(b(b(b(b(b(x1))))))))))) | (109) |
a(b(c(b(b(c(c(x1))))))) | → | a(b(c(c(c(c(a(a(a(a(x1)))))))))) | (110) |
a(b(b(b(b(b(a(x1))))))) | → | a(b(b(b(b(b(b(b(b(b(b(x1))))))))))) | (111) |
a(b(b(b(b(c(c(x1))))))) | → | a(b(b(c(c(c(a(a(a(a(x1)))))))))) | (112) |
a(b(a(b(b(b(a(x1))))))) | → | a(b(a(b(b(b(b(b(b(b(b(x1))))))))))) | (113) |
a(b(a(b(b(c(c(x1))))))) | → | a(b(a(c(c(c(a(a(a(a(x1)))))))))) | (114) |
a(a(c(b(b(b(a(x1))))))) | → | a(a(c(b(b(b(b(b(b(b(b(x1))))))))))) | (115) |
a(a(c(b(b(c(c(x1))))))) | → | a(a(c(c(c(c(a(a(a(a(x1)))))))))) | (116) |
a(a(b(b(b(b(a(x1))))))) | → | a(a(b(b(b(b(b(b(b(b(b(x1))))))))))) | (117) |
a(a(b(b(b(c(c(x1))))))) | → | a(a(b(c(c(c(a(a(a(a(x1)))))))))) | (118) |
a(a(a(b(b(b(a(x1))))))) | → | a(a(a(b(b(b(b(b(b(b(b(x1))))))))))) | (119) |
a(a(a(b(b(c(c(x1))))))) | → | a(a(a(c(c(c(a(a(a(a(x1)))))))))) | (120) |
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
[c(x1)] | = | 3x1 + 0 |
[b(x1)] | = | 3x1 + 1 |
[a(x1)] | = | 3x1 + 2 |
There are 1458 ruless (increase limit for explicit display).
[c0(x1)] | = |
x1 +
|
||||
[c9(x1)] | = |
x1 +
|
||||
[c18(x1)] | = |
x1 +
|
||||
[c3(x1)] | = |
x1 +
|
||||
[c12(x1)] | = |
x1 +
|
||||
[c21(x1)] | = |
x1 +
|
||||
[c6(x1)] | = |
x1 +
|
||||
[c15(x1)] | = |
x1 +
|
||||
[c24(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c10(x1)] | = |
x1 +
|
||||
[c19(x1)] | = |
x1 +
|
||||
[c4(x1)] | = |
x1 +
|
||||
[c13(x1)] | = |
x1 +
|
||||
[c22(x1)] | = |
x1 +
|
||||
[c7(x1)] | = |
x1 +
|
||||
[c16(x1)] | = |
x1 +
|
||||
[c25(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[c11(x1)] | = |
x1 +
|
||||
[c20(x1)] | = |
x1 +
|
||||
[c5(x1)] | = |
x1 +
|
||||
[c14(x1)] | = |
x1 +
|
||||
[c23(x1)] | = |
x1 +
|
||||
[c8(x1)] | = |
x1 +
|
||||
[c17(x1)] | = |
x1 +
|
||||
[c26(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b9(x1)] | = |
x1 +
|
||||
[b18(x1)] | = |
x1 +
|
||||
[b3(x1)] | = |
x1 +
|
||||
[b12(x1)] | = |
x1 +
|
||||
[b21(x1)] | = |
x1 +
|
||||
[b6(x1)] | = |
x1 +
|
||||
[b15(x1)] | = |
x1 +
|
||||
[b24(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b10(x1)] | = |
x1 +
|
||||
[b19(x1)] | = |
x1 +
|
||||
[b4(x1)] | = |
x1 +
|
||||
[b13(x1)] | = |
x1 +
|
||||
[b22(x1)] | = |
x1 +
|
||||
[b7(x1)] | = |
x1 +
|
||||
[b16(x1)] | = |
x1 +
|
||||
[b25(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[b11(x1)] | = |
x1 +
|
||||
[b20(x1)] | = |
x1 +
|
||||
[b5(x1)] | = |
x1 +
|
||||
[b14(x1)] | = |
x1 +
|
||||
[b23(x1)] | = |
x1 +
|
||||
[b8(x1)] | = |
x1 +
|
||||
[b17(x1)] | = |
x1 +
|
||||
[b26(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a9(x1)] | = |
x1 +
|
||||
[a18(x1)] | = |
x1 +
|
||||
[a3(x1)] | = |
x1 +
|
||||
[a12(x1)] | = |
x1 +
|
||||
[a21(x1)] | = |
x1 +
|
||||
[a6(x1)] | = |
x1 +
|
||||
[a15(x1)] | = |
x1 +
|
||||
[a24(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a10(x1)] | = |
x1 +
|
||||
[a19(x1)] | = |
x1 +
|
||||
[a4(x1)] | = |
x1 +
|
||||
[a13(x1)] | = |
x1 +
|
||||
[a22(x1)] | = |
x1 +
|
||||
[a7(x1)] | = |
x1 +
|
||||
[a16(x1)] | = |
x1 +
|
||||
[a25(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[a11(x1)] | = |
x1 +
|
||||
[a20(x1)] | = |
x1 +
|
||||
[a5(x1)] | = |
x1 +
|
||||
[a14(x1)] | = |
x1 +
|
||||
[a23(x1)] | = |
x1 +
|
||||
[a8(x1)] | = |
x1 +
|
||||
[a17(x1)] | = |
x1 +
|
||||
[a26(x1)] | = |
x1 +
|
There are 1430 ruless (increase limit for explicit display).
[c9(x1)] | = |
|
||||||||
[c18(x1)] | = |
|
||||||||
[c12(x1)] | = |
|
||||||||
[c15(x1)] | = |
|
||||||||
[c24(x1)] | = |
|
||||||||
[c10(x1)] | = |
|
||||||||
[c13(x1)] | = |
|
||||||||
[c16(x1)] | = |
|
||||||||
[c11(x1)] | = |
|
||||||||
[c14(x1)] | = |
|
||||||||
[c17(x1)] | = |
|
||||||||
[c26(x1)] | = |
|
||||||||
[b0(x1)] | = |
|
||||||||
[b9(x1)] | = |
|
||||||||
[b12(x1)] | = |
|
||||||||
[b15(x1)] | = |
|
||||||||
[b1(x1)] | = |
|
||||||||
[b10(x1)] | = |
|
||||||||
[b4(x1)] | = |
|
||||||||
[b13(x1)] | = |
|
||||||||
[b22(x1)] | = |
|
||||||||
[b16(x1)] | = |
|
||||||||
[b25(x1)] | = |
|
||||||||
[b11(x1)] | = |
|
||||||||
[b14(x1)] | = |
|
||||||||
[b17(x1)] | = |
|
||||||||
[b26(x1)] | = |
|
||||||||
[a9(x1)] | = |
|
||||||||
[a12(x1)] | = |
|
||||||||
[a15(x1)] | = |
|
||||||||
[a24(x1)] | = |
|
||||||||
[a10(x1)] | = |
|
||||||||
[a13(x1)] | = |
|
||||||||
[a16(x1)] | = |
|
||||||||
[a11(x1)] | = |
|
||||||||
[a20(x1)] | = |
|
||||||||
[a14(x1)] | = |
|
||||||||
[a8(x1)] | = |
|
||||||||
[a17(x1)] | = |
|
||||||||
[a26(x1)] | = |
|
b13(b13(b13(b22(b25(b26(a26(x1))))))) | → | b13(b13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1565) |
b16(b14(a13(b22(b25(b26(a26(x1))))))) | → | b16(b14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1538) |
b10(b12(c13(b22(b25(b26(a26(x1))))))) | → | b10(b12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1511) |
b14(a13(b13(b22(b25(b26(a26(x1))))))) | → | b14(a13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1484) |
b17(a14(a13(b22(b25(b26(a26(x1))))))) | → | b17(a14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1457) |
b11(a12(c13(b22(b25(b26(a26(x1))))))) | → | b11(a12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1430) |
b12(c13(b13(b22(b25(b26(a26(x1))))))) | → | b12(c13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1403) |
b15(c14(a13(b22(b25(b26(a26(x1))))))) | → | b15(c14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1376) |
b9(c12(c13(b22(b25(b26(a26(x1))))))) | → | b9(c12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1349) |
a13(b13(b13(b22(b25(b26(a26(x1))))))) | → | a13(b13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1322) |
a16(b14(a13(b22(b25(b26(a26(x1))))))) | → | a16(b14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1295) |
a10(b12(c13(b22(b25(b26(a26(x1))))))) | → | a10(b12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1268) |
a14(a13(b13(b22(b25(b26(a26(x1))))))) | → | a14(a13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1241) |
a17(a14(a13(b22(b25(b26(a26(x1))))))) | → | a17(a14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1214) |
a11(a12(c13(b22(b25(b26(a26(x1))))))) | → | a11(a12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1187) |
a12(c13(b13(b22(b25(b26(a26(x1))))))) | → | a12(c13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1160) |
a15(c14(a13(b22(b25(b26(a26(x1))))))) | → | a15(c14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1133) |
a9(c12(c13(b22(b25(b26(a26(x1))))))) | → | a9(c12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1106) |
c13(b13(b13(b22(b25(b26(a26(x1))))))) | → | c13(b13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1079) |
c16(b14(a13(b22(b25(b26(a26(x1))))))) | → | c16(b14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1052) |
c10(b12(c13(b22(b25(b26(a26(x1))))))) | → | c10(b12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (1025) |
c14(a13(b13(b22(b25(b26(a26(x1))))))) | → | c14(a13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (998) |
c17(a14(a13(b22(b25(b26(a26(x1))))))) | → | c17(a14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (971) |
c11(a12(c13(b22(b25(b26(a26(x1))))))) | → | c11(a12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (944) |
c12(c13(b13(b22(b25(b26(a26(x1))))))) | → | c12(c13(b13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (917) |
c15(c14(a13(b22(b25(b26(a26(x1))))))) | → | c15(c14(a13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (890) |
c9(c12(c13(b22(b25(b26(a26(x1))))))) | → | c9(c12(c13(b13(b13(b13(b13(b13(b22(b25(b26(x1))))))))))) | (863) |
[c18(x1)] | = |
x1 +
|
||||
[c24(x1)] | = |
x1 +
|
||||
[c26(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b4(x1)] | = |
x1 +
|
||||
[b13(x1)] | = |
x1 +
|
||||
[a24(x1)] | = |
x1 +
|
||||
[a20(x1)] | = |
x1 +
|
||||
[a8(x1)] | = |
x1 +
|
||||
[a26(x1)] | = |
x1 +
|
b13(b13(b4(b1(b0(c18(c24(x1))))))) | → | b4(b1(b0(c18(c24(c26(a26(a8(a20(a24(x1)))))))))) | (2285) |
There are no rules in the TRS. Hence, it is terminating.