Certification Problem

Input (TPDB SRS_Standard/Secret_06_SRS/aprove08)

The rewrite relation of the following TRS is considered.

i(0(x1)) p(s(p(s(0(p(s(p(s(x1))))))))) (1)
i(s(x1)) p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) (2)
j(0(x1)) p(s(p(p(s(s(0(p(s(p(s(x1))))))))))) (3)
j(s(x1)) s(s(s(s(p(p(s(s(i(p(s(p(s(x1))))))))))))) (4)
p(p(s(x1))) p(x1) (5)
p(s(x1)) x1 (6)
p(0(x1)) 0(s(s(s(s(s(s(s(s(x1))))))))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[0(x1)] = x1 +
0
[j(x1)] = x1 +
1
[i(x1)] = x1 +
1
[s(x1)] = x1 +
0
[p(x1)] = x1 +
0
all of the following rules can be deleted.
i(0(x1)) p(s(p(s(0(p(s(p(s(x1))))))))) (1)
j(0(x1)) p(s(p(p(s(s(0(p(s(p(s(x1))))))))))) (3)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
j#(s(x1)) i#(p(s(p(s(x1))))) (8)
j#(s(x1)) p#(s(x1)) (9)
j#(s(x1)) p#(s(s(i(p(s(p(s(x1)))))))) (10)
j#(s(x1)) p#(s(p(s(x1)))) (11)
j#(s(x1)) p#(p(s(s(i(p(s(p(s(x1))))))))) (12)
i#(s(x1)) j#(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))) (13)
i#(s(x1)) p#(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))) (14)
i#(s(x1)) p#(s(s(s(s(x1))))) (15)
i#(s(x1)) p#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) (16)
i#(s(x1)) p#(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))) (17)
i#(s(x1)) p#(s(p(p(p(p(s(s(s(s(x1)))))))))) (18)
i#(s(x1)) p#(p(s(s(s(s(x1)))))) (19)
i#(s(x1)) p#(p(p(s(s(s(s(x1))))))) (20)
i#(s(x1)) p#(p(p(p(s(s(s(s(x1)))))))) (21)
p#(p(s(x1))) p#(x1) (22)

1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[0(x1)] = x1 +
0
[j(x1)] = x1 +
0
[i(x1)] = x1 +
0
[s(x1)] = x1 +
0
[p(x1)] = x1 +
0
[j#(x1)] = x1 +
1
[i#(x1)] = x1 +
1
[p#(x1)] = x1 +
0
together with the usable rules
i(s(x1)) p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) (2)
j(s(x1)) s(s(s(s(p(p(s(s(i(p(s(p(s(x1))))))))))))) (4)
p(p(s(x1))) p(x1) (5)
p(s(x1)) x1 (6)
p(0(x1)) 0(s(s(s(s(s(s(s(s(x1))))))))) (7)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
j#(s(x1)) p#(s(x1)) (9)
j#(s(x1)) p#(s(s(i(p(s(p(s(x1)))))))) (10)
j#(s(x1)) p#(s(p(s(x1)))) (11)
j#(s(x1)) p#(p(s(s(i(p(s(p(s(x1))))))))) (12)
i#(s(x1)) p#(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))) (14)
i#(s(x1)) p#(s(s(s(s(x1))))) (15)
i#(s(x1)) p#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) (16)
i#(s(x1)) p#(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))) (17)
i#(s(x1)) p#(s(p(p(p(p(s(s(s(s(x1)))))))))) (18)
i#(s(x1)) p#(p(s(s(s(s(x1)))))) (19)
i#(s(x1)) p#(p(p(s(s(s(s(x1))))))) (20)
i#(s(x1)) p#(p(p(p(s(s(s(s(x1)))))))) (21)
and no rules could be deleted.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.