Certification Problem

Input (TPDB SRS_Standard/Secret_06_SRS/multum4)

The rewrite relation of the following TRS is considered.

b(b(a(b(b(a(b(b(b(b(b(b(a(b(x1)))))))))))))) b(b(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(b(x1)))))))))))))))))) (1)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b(b(b(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1)))))))))))))))))) (2)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(x1))) (3)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(x1)))) (4)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(b(x1))))) (5)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1)))))))))))))))))) (6)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1))))))))))))))))) (7)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1)))))))))))))))) (8)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1))))))))))))))) (9)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(a(b(b(b(b(b(x1)))))))) (10)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(a(b(b(a(b(b(b(b(b(x1))))))))))) (11)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(a(b(b(a(b(b(a(b(b(b(b(b(x1)))))))))))))) (12)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(a(b(b(b(b(b(x1))))))) (13)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(a(b(b(a(b(b(b(b(b(x1)))))))))) (14)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(a(b(b(a(b(b(a(b(b(b(b(b(x1))))))))))))) (15)

1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[b(x1)] = x1 +
0
[a(x1)] = x1 +
1
[b#(x1)] = x1 +
0
together with the usable rule
b(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b(b(b(b(b(b(a(b(b(a(b(b(a(b(b(b(b(b(x1)))))))))))))))))) (2)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(x1))) (3)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(x1)))) (4)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(b(b(b(x1))))) (5)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(a(b(b(b(b(b(x1)))))))) (10)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(b(a(b(b(a(b(b(b(b(b(x1))))))))))) (11)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(a(b(b(b(b(b(x1))))))) (13)
b#(a(b(b(b(b(b(b(a(b(b(a(b(b(x1)))))))))))))) b#(a(b(b(a(b(b(b(b(b(x1)))))))))) (14)
and no rules could be deleted.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.