The rewrite relation of the following TRS is considered.
a(b(c(x1))) | → | c(b(a(a(c(b(x1)))))) | (1) |
a(x1) | → | x1 | (2) |
b(x1) | → | x1 | (3) |
c(x1) | → | x1 | (4) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(a(b(c(x1)))) | → | c(c(b(a(a(c(b(x1))))))) | (5) |
c(a(x1)) | → | c(x1) | (6) |
c(b(x1)) | → | c(x1) | (7) |
c(c(x1)) | → | c(x1) | (8) |
b(a(b(c(x1)))) | → | b(c(b(a(a(c(b(x1))))))) | (9) |
b(a(x1)) | → | b(x1) | (10) |
b(b(x1)) | → | b(x1) | (11) |
b(c(x1)) | → | b(x1) | (12) |
a(a(b(c(x1)))) | → | a(c(b(a(a(c(b(x1))))))) | (13) |
a(a(x1)) | → | a(x1) | (14) |
a(b(x1)) | → | a(x1) | (15) |
a(c(x1)) | → | a(x1) | (16) |
As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):
[c(x1)] | = | 3x1 + 0 |
[b(x1)] | = | 3x1 + 1 |
[a(x1)] | = | 3x1 + 2 |
a2(a1(b0(c2(x1)))) | → | a0(c1(b2(a2(a0(c1(b2(x1))))))) | (17) |
a2(a1(b0(c1(x1)))) | → | a0(c1(b2(a2(a0(c1(b1(x1))))))) | (18) |
a2(a1(b0(c0(x1)))) | → | a0(c1(b2(a2(a0(c1(b0(x1))))))) | (19) |
b2(a1(b0(c2(x1)))) | → | b0(c1(b2(a2(a0(c1(b2(x1))))))) | (20) |
b2(a1(b0(c1(x1)))) | → | b0(c1(b2(a2(a0(c1(b1(x1))))))) | (21) |
b2(a1(b0(c0(x1)))) | → | b0(c1(b2(a2(a0(c1(b0(x1))))))) | (22) |
c2(a1(b0(c2(x1)))) | → | c0(c1(b2(a2(a0(c1(b2(x1))))))) | (23) |
c2(a1(b0(c1(x1)))) | → | c0(c1(b2(a2(a0(c1(b1(x1))))))) | (24) |
c2(a1(b0(c0(x1)))) | → | c0(c1(b2(a2(a0(c1(b0(x1))))))) | (25) |
a2(a2(x1)) | → | a2(x1) | (26) |
a2(a1(x1)) | → | a1(x1) | (27) |
a2(a0(x1)) | → | a0(x1) | (28) |
b2(a2(x1)) | → | b2(x1) | (29) |
b2(a1(x1)) | → | b1(x1) | (30) |
b2(a0(x1)) | → | b0(x1) | (31) |
c2(a2(x1)) | → | c2(x1) | (32) |
c2(a1(x1)) | → | c1(x1) | (33) |
c2(a0(x1)) | → | c0(x1) | (34) |
a1(b2(x1)) | → | a2(x1) | (35) |
a1(b1(x1)) | → | a1(x1) | (36) |
a1(b0(x1)) | → | a0(x1) | (37) |
b1(b2(x1)) | → | b2(x1) | (38) |
b1(b1(x1)) | → | b1(x1) | (39) |
b1(b0(x1)) | → | b0(x1) | (40) |
c1(b2(x1)) | → | c2(x1) | (41) |
c1(b1(x1)) | → | c1(x1) | (42) |
c1(b0(x1)) | → | c0(x1) | (43) |
a0(c2(x1)) | → | a2(x1) | (44) |
a0(c1(x1)) | → | a1(x1) | (45) |
a0(c0(x1)) | → | a0(x1) | (46) |
b0(c2(x1)) | → | b2(x1) | (47) |
b0(c1(x1)) | → | b1(x1) | (48) |
b0(c0(x1)) | → | b0(x1) | (49) |
c0(c2(x1)) | → | c2(x1) | (50) |
c0(c1(x1)) | → | c1(x1) | (51) |
c0(c0(x1)) | → | c0(x1) | (52) |
[c0(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
b2(a1(x1)) | → | b1(x1) | (30) |
c2(a1(x1)) | → | c1(x1) | (33) |
a1(b2(x1)) | → | a2(x1) | (35) |
a1(b0(x1)) | → | a0(x1) | (37) |
a0(c2(x1)) | → | a2(x1) | (44) |
a0(c0(x1)) | → | a0(x1) | (46) |
b0(c2(x1)) | → | b2(x1) | (47) |
b0(c1(x1)) | → | b1(x1) | (48) |
b0(c0(x1)) | → | b0(x1) | (49) |
c0(c2(x1)) | → | c2(x1) | (50) |
c0(c1(x1)) | → | c1(x1) | (51) |
c0(c0(x1)) | → | c0(x1) | (52) |
c1#(b1(x1)) | → | c1#(x1) | (53) |
c1#(b2(x1)) | → | c2#(x1) | (54) |
c2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (55) |
c2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (56) |
c2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (57) |
c2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (58) |
c2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (59) |
c2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (60) |
c2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (61) |
c2#(a1(b0(c1(x1)))) | → | b1#(x1) | (62) |
c2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (63) |
c2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (64) |
c2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (65) |
c2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (66) |
c2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (67) |
c2#(a1(b0(c2(x1)))) | → | b2#(x1) | (68) |
c2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (69) |
c2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (70) |
c2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (71) |
c2#(a2(x1)) | → | c2#(x1) | (72) |
b2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (73) |
b2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (74) |
b2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (75) |
b2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (76) |
b2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (77) |
b2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (78) |
b2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (79) |
b2#(a1(b0(c1(x1)))) | → | b1#(x1) | (80) |
b2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (81) |
b2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (82) |
b2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (83) |
b2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (84) |
b2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (85) |
b2#(a1(b0(c2(x1)))) | → | b2#(x1) | (86) |
b2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (87) |
b2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (88) |
b2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (89) |
b2#(a2(x1)) | → | b2#(x1) | (90) |
a0#(c1(x1)) | → | a1#(x1) | (91) |
a1#(b1(x1)) | → | a1#(x1) | (92) |
a2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (93) |
a2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (94) |
a2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (95) |
a2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (96) |
a2#(a1(b0(c0(x1)))) | → | a0#(c1(b2(a2(a0(c1(b0(x1))))))) | (97) |
a2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (98) |
a2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (99) |
a2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (100) |
a2#(a1(b0(c1(x1)))) | → | b1#(x1) | (101) |
a2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (102) |
a2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (103) |
a2#(a1(b0(c1(x1)))) | → | a0#(c1(b2(a2(a0(c1(b1(x1))))))) | (104) |
a2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (105) |
a2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (106) |
a2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (107) |
a2#(a1(b0(c2(x1)))) | → | b2#(x1) | (108) |
a2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (109) |
a2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (110) |
a2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(a2(a0(c1(b2(x1))))))) | (111) |
a2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (112) |
[c0(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[c1#(x1)] | = |
x1 +
|
||||
[c2#(x1)] | = |
x1 +
|
||||
[b1#(x1)] | = |
x1 +
|
||||
[b2#(x1)] | = |
x1 +
|
||||
[a0#(x1)] | = |
x1 +
|
||||
[a1#(x1)] | = |
x1 +
|
||||
[a2#(x1)] | = |
x1 +
|
a2(a1(b0(c2(x1)))) | → | a0(c1(b2(a2(a0(c1(b2(x1))))))) | (17) |
a2(a1(b0(c1(x1)))) | → | a0(c1(b2(a2(a0(c1(b1(x1))))))) | (18) |
a2(a1(b0(c0(x1)))) | → | a0(c1(b2(a2(a0(c1(b0(x1))))))) | (19) |
b2(a1(b0(c2(x1)))) | → | b0(c1(b2(a2(a0(c1(b2(x1))))))) | (20) |
b2(a1(b0(c1(x1)))) | → | b0(c1(b2(a2(a0(c1(b1(x1))))))) | (21) |
b2(a1(b0(c0(x1)))) | → | b0(c1(b2(a2(a0(c1(b0(x1))))))) | (22) |
c2(a1(b0(c2(x1)))) | → | c0(c1(b2(a2(a0(c1(b2(x1))))))) | (23) |
c2(a1(b0(c1(x1)))) | → | c0(c1(b2(a2(a0(c1(b1(x1))))))) | (24) |
c2(a1(b0(c0(x1)))) | → | c0(c1(b2(a2(a0(c1(b0(x1))))))) | (25) |
a2(a2(x1)) | → | a2(x1) | (26) |
a2(a1(x1)) | → | a1(x1) | (27) |
a2(a0(x1)) | → | a0(x1) | (28) |
b2(a2(x1)) | → | b2(x1) | (29) |
b2(a0(x1)) | → | b0(x1) | (31) |
c2(a2(x1)) | → | c2(x1) | (32) |
c2(a0(x1)) | → | c0(x1) | (34) |
a1(b1(x1)) | → | a1(x1) | (36) |
b1(b2(x1)) | → | b2(x1) | (38) |
b1(b1(x1)) | → | b1(x1) | (39) |
b1(b0(x1)) | → | b0(x1) | (40) |
c1(b2(x1)) | → | c2(x1) | (41) |
c1(b1(x1)) | → | c1(x1) | (42) |
c1(b0(x1)) | → | c0(x1) | (43) |
a0(c1(x1)) | → | a1(x1) | (45) |
c1#(b2(x1)) | → | c2#(x1) | (54) |
c2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (55) |
c2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (56) |
c2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (57) |
c2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (58) |
c2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (59) |
c2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (60) |
c2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (61) |
c2#(a1(b0(c1(x1)))) | → | b1#(x1) | (62) |
c2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (63) |
c2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (64) |
c2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (65) |
c2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (66) |
c2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (67) |
c2#(a1(b0(c2(x1)))) | → | b2#(x1) | (68) |
c2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (69) |
c2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (70) |
c2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (71) |
b2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (73) |
b2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (74) |
b2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (75) |
b2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (76) |
b2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (77) |
b2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (78) |
b2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (79) |
b2#(a1(b0(c1(x1)))) | → | b1#(x1) | (80) |
b2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (81) |
b2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (82) |
b2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (83) |
b2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (84) |
b2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (85) |
b2#(a1(b0(c2(x1)))) | → | b2#(x1) | (86) |
b2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (87) |
b2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (88) |
b2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (89) |
a0#(c1(x1)) | → | a1#(x1) | (91) |
a2#(a1(b0(c0(x1)))) | → | c1#(b0(x1)) | (93) |
a2#(a1(b0(c0(x1)))) | → | c1#(b2(a2(a0(c1(b0(x1)))))) | (94) |
a2#(a1(b0(c0(x1)))) | → | b2#(a2(a0(c1(b0(x1))))) | (95) |
a2#(a1(b0(c0(x1)))) | → | a0#(c1(b0(x1))) | (96) |
a2#(a1(b0(c0(x1)))) | → | a0#(c1(b2(a2(a0(c1(b0(x1))))))) | (97) |
a2#(a1(b0(c0(x1)))) | → | a2#(a0(c1(b0(x1)))) | (98) |
a2#(a1(b0(c1(x1)))) | → | c1#(b1(x1)) | (99) |
a2#(a1(b0(c1(x1)))) | → | c1#(b2(a2(a0(c1(b1(x1)))))) | (100) |
a2#(a1(b0(c1(x1)))) | → | b1#(x1) | (101) |
a2#(a1(b0(c1(x1)))) | → | b2#(a2(a0(c1(b1(x1))))) | (102) |
a2#(a1(b0(c1(x1)))) | → | a0#(c1(b1(x1))) | (103) |
a2#(a1(b0(c1(x1)))) | → | a0#(c1(b2(a2(a0(c1(b1(x1))))))) | (104) |
a2#(a1(b0(c1(x1)))) | → | a2#(a0(c1(b1(x1)))) | (105) |
a2#(a1(b0(c2(x1)))) | → | c1#(b2(x1)) | (106) |
a2#(a1(b0(c2(x1)))) | → | c1#(b2(a2(a0(c1(b2(x1)))))) | (107) |
a2#(a1(b0(c2(x1)))) | → | b2#(x1) | (108) |
a2#(a1(b0(c2(x1)))) | → | b2#(a2(a0(c1(b2(x1))))) | (109) |
a2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(x1))) | (110) |
a2#(a1(b0(c2(x1)))) | → | a0#(c1(b2(a2(a0(c1(b2(x1))))))) | (111) |
a2#(a1(b0(c2(x1)))) | → | a2#(a0(c1(b2(x1)))) | (112) |
The dependency pairs are split into 4 components.
c1#(b1(x1)) | → | c1#(x1) | (53) |
[b1(x1)] | = |
x1 +
|
||||
[c1#(x1)] | = |
x1 +
|
c1#(b1(x1)) | → | c1#(x1) | (53) |
The dependency pairs are split into 0 components.
c2#(a2(x1)) | → | c2#(x1) | (72) |
[a2(x1)] | = |
x1 +
|
||||
[c2#(x1)] | = |
x1 +
|
c2#(a2(x1)) | → | c2#(x1) | (72) |
The dependency pairs are split into 0 components.
b2#(a2(x1)) | → | b2#(x1) | (90) |
[a2(x1)] | = |
x1 +
|
||||
[b2#(x1)] | = |
x1 +
|
b2#(a2(x1)) | → | b2#(x1) | (90) |
The dependency pairs are split into 0 components.
a1#(b1(x1)) | → | a1#(x1) | (92) |
[b1(x1)] | = |
x1 +
|
||||
[a1#(x1)] | = |
x1 +
|
a1#(b1(x1)) | → | a1#(x1) | (92) |
The dependency pairs are split into 0 components.