The rewrite relation of the following TRS is considered.
| a(b(a(a(b(a(x1)))))) | → | a(a(b(a(b(a(b(a(b(a(b(a(a(b(x1)))))))))))))) | (1) |
{b(☐), a(☐)}
We obtain the transformed TRS| b(a(b(a(a(b(a(x1))))))) | → | b(a(a(b(a(b(a(b(a(b(a(b(a(a(b(x1))))))))))))))) | (2) |
| a(a(b(a(a(b(a(x1))))))) | → | a(a(a(b(a(b(a(b(a(b(a(b(a(a(b(x1))))))))))))))) | (3) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
| [b(x1)] | = | 2x1 + 0 |
| [a(x1)] | = | 2x1 + 1 |
| a1(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (4) |
| a1(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (5) |
| b1(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (6) |
| b1(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (7) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))))) | (8) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))) | (9) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b0(x1)))))))) | (10) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a1(a0(b0(x1)))))) | (11) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a1(a0(b0(x1)))) | (12) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (13) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1#(a0(b0(x1))) | (14) |
| b1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))))))) | (15) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (16) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (17) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (18) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (19) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (20) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (21) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (22) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (23) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (24) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))))) | (25) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))) | (26) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b0(x1)))))))) | (27) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a0(b1(a1(a0(b0(x1)))))) | (28) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1#(a1(a0(b0(x1)))) | (29) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1#(a0(b0(x1))) | (30) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1)))))))))))))) | (31) |
| a1#(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (32) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (33) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (34) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (35) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (36) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (37) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (38) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (39) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (40) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (41) |
The dependency pairs are split into 1 component.
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (38) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (16) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (17) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (18) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (19) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (20) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (21) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (22) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (23) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (33) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (24) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (34) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (35) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (36) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (37) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (39) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (40) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (41) |
| [b0(x1)] | = |
|
||||||||||||
| [b1(x1)] | = |
|
||||||||||||
| [a0(x1)] | = |
|
||||||||||||
| [a1(x1)] | = |
|
||||||||||||
| [b1#(x1)] | = |
|
||||||||||||
| [a1#(x1)] | = |
|
| a1(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (4) |
| a1(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (5) |
| b1(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (6) |
| b1(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (7) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (41) |
The dependency pairs are split into 1 component.
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (38) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (16) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (17) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (18) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (19) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (20) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (21) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (22) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (23) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (33) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (24) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (34) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (35) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (36) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (37) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (39) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (40) |
| [b0(x1)] | = |
|
||||||||||||
| [b1(x1)] | = |
|
||||||||||||
| [a0(x1)] | = |
|
||||||||||||
| [a1(x1)] | = |
|
||||||||||||
| [b1#(x1)] | = |
|
||||||||||||
| [a1#(x1)] | = |
|
| a1(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (4) |
| a1(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (5) |
| b1(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (6) |
| b1(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (7) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (38) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(x1)))) | (21) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (22) |
The dependency pairs are split into 1 component.
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (16) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (17) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (18) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (19) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (20) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (23) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (33) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (24) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (34) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (35) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (36) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (37) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (39) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (40) |
| [b0(x1)] | = |
|
||||||||||||||||||
| [b1(x1)] | = |
|
||||||||||||||||||
| [a0(x1)] | = |
|
||||||||||||||||||
| [a1(x1)] | = |
|
||||||||||||||||||
| [b1#(x1)] | = |
|
||||||||||||||||||
| [a1#(x1)] | = |
|
| a1(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (4) |
| a1(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (5) |
| b1(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (6) |
| b1(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (7) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (16) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (17) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (18) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (19) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (20) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(x1) | (33) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))) | (34) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))) | (35) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a0(b1(a1(a0(b1(x1)))))))) | (36) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1#(a0(b1(a1(a0(b1(x1)))))) | (37) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (39) |
| a1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (40) |
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [b1#(x1)] | = |
x1 +
|
||||
| [a1#(x1)] | = |
x1 +
|
| a1(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (4) |
| a1(a0(b1(a1(a0(b1(a0(x1))))))) | → | a1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (5) |
| b1(a0(b1(a1(a0(b1(a1(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1))))))))))))))) | (6) |
| b1(a0(b1(a1(a0(b1(a0(x1))))))) | → | b1(a1(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b0(x1))))))))))))))) | (7) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(x1))) | (23) |
| b1#(a0(b1(a1(a0(b1(a1(x1))))))) | → | a1#(a0(b1(a0(b1(a0(b1(a0(b1(a0(b1(a1(a0(b1(x1)))))))))))))) | (24) |
The dependency pairs are split into 0 components.