The rewrite relation of the following TRS is considered.
a(a(b(x1))) | → | b(a(b(x1))) | (1) |
b(a(x1)) | → | a(b(b(x1))) | (2) |
b(c(a(x1))) | → | c(c(a(a(b(x1))))) | (3) |
b#(c(a(x1))) | → | b#(x1) | (4) |
b#(c(a(x1))) | → | a#(b(x1)) | (5) |
b#(c(a(x1))) | → | a#(a(b(x1))) | (6) |
b#(a(x1)) | → | b#(x1) | (7) |
b#(a(x1)) | → | b#(b(x1)) | (8) |
b#(a(x1)) | → | a#(b(b(x1))) | (9) |
a#(a(b(x1))) | → | b#(a(b(x1))) | (10) |
The dependency pairs are split into 1 component.
b#(c(a(x1))) | → | b#(x1) | (4) |
b#(c(a(x1))) | → | a#(b(x1)) | (5) |
a#(a(b(x1))) | → | b#(a(b(x1))) | (10) |
b#(c(a(x1))) | → | a#(a(b(x1))) | (6) |
b#(a(x1)) | → | b#(x1) | (7) |
b#(a(x1)) | → | b#(b(x1)) | (8) |
b#(a(x1)) | → | a#(b(b(x1))) | (9) |
[c(x1)] | = |
|
||||||||||||
[b(x1)] | = |
|
||||||||||||
[a(x1)] | = |
|
||||||||||||
[b#(x1)] | = |
|
||||||||||||
[a#(x1)] | = |
|
a(a(b(x1))) | → | b(a(b(x1))) | (1) |
b(a(x1)) | → | a(b(b(x1))) | (2) |
b(c(a(x1))) | → | c(c(a(a(b(x1))))) | (3) |
b#(c(a(x1))) | → | b#(x1) | (4) |
b#(c(a(x1))) | → | a#(b(x1)) | (5) |
b#(c(a(x1))) | → | a#(a(b(x1))) | (6) |
The dependency pairs are split into 1 component.
a#(a(b(x1))) | → | b#(a(b(x1))) | (10) |
b#(a(x1)) | → | b#(x1) | (7) |
b#(a(x1)) | → | b#(b(x1)) | (8) |
b#(a(x1)) | → | a#(b(b(x1))) | (9) |
[c(x1)] | = |
|
||||||||
[b(x1)] | = |
|
||||||||
[a(x1)] | = |
|
||||||||
[b#(x1)] | = |
|
||||||||
[a#(x1)] | = |
|
a(a(b(x1))) | → | b(a(b(x1))) | (1) |
b(a(x1)) | → | a(b(b(x1))) | (2) |
b(c(a(x1))) | → | c(c(a(a(b(x1))))) | (3) |
b#(a(x1)) | → | b#(x1) | (7) |
b#(a(x1)) | → | b#(b(x1)) | (8) |
b#(a(x1)) | → | a#(b(b(x1))) | (9) |
[c(x1)] | = |
x1 +
|
||||
[b(x1)] | = |
x1 +
|
||||
[a(x1)] | = |
x1 +
|
||||
[b#(x1)] | = |
x1 +
|
||||
[a#(x1)] | = |
x1 +
|
a(a(b(x1))) | → | b(a(b(x1))) | (1) |
b(a(x1)) | → | a(b(b(x1))) | (2) |
b(c(a(x1))) | → | c(c(a(a(b(x1))))) | (3) |
a#(a(b(x1))) | → | b#(a(b(x1))) | (10) |
The dependency pairs are split into 0 components.