The rewrite relation of the following TRS is considered.
| b(a(b(a(a(a(x1)))))) | → | a(a(a(b(a(b(a(b(a(x1))))))))) | (1) |
{b(☐), a(☐)}
We obtain the transformed TRS| b(b(a(b(a(a(a(x1))))))) | → | b(a(a(a(b(a(b(a(b(a(x1)))))))))) | (2) |
| a(b(a(b(a(a(a(x1))))))) | → | a(a(a(a(b(a(b(a(b(a(x1)))))))))) | (3) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
| [b(x1)] | = | 2x1 + 0 |
| [a(x1)] | = | 2x1 + 1 |
| b0(b1(a0(b1(a1(a1(a0(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (4) |
| b0(b1(a0(b1(a1(a1(a1(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (5) |
| a0(b1(a0(b1(a1(a1(a0(x1))))))) | → | a1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (6) |
| a0(b1(a0(b1(a1(a1(a1(x1))))))) | → | a1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (7) |
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
| b0(b1(a0(b1(a1(a1(a0(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a0(x1)))))))))) | (4) |
| b0(b1(a0(b1(a1(a1(a1(x1))))))) | → | b1(a1(a1(a0(b1(a0(b1(a0(b1(a1(x1)))))))))) | (5) |
| a0(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (8) |
| a1(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (9) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (10) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(a1(a1(a1(x1)))))))) | (11) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(a1(a1(a1(x1)))))) | (12) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(b1(a0(a1(a1(a1(x1)))))))) | (17) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(b1(a0(a1(a1(a1(x1)))))) | (18) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (21) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
The dependency pairs are split into 1 component.
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
| [b1(x1)] | = |
|
||||||||||||||||||
| [a0(x1)] | = |
|
||||||||||||||||||
| [a1(x1)] | = |
|
||||||||||||||||||
| [a0#(x1)] | = |
|
||||||||||||||||||
| [a1#(x1)] | = |
|
| a0(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (8) |
| a1(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1(b1(a0(b1(a0(b1(a0(a1(a1(a1(x1)))))))))) | (9) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (19) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a0#(a1(a1(a1(x1)))) | (13) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (14) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(x1) | (20) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (22) |
| a1#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (23) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(x1)) | (15) |
| a0#(a1(a1(b1(a0(b1(a0(x1))))))) | → | a1#(a1(a1(x1))) | (16) |
The dependency pairs are split into 0 components.