The rewrite relation of the following TRS is considered.
c(a(a(b(c(a(x1)))))) | → | a(a(b(c(c(a(a(b(c(x1))))))))) | (1) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(a(a(b(c(a(x1))))))) | → | c(a(a(b(c(c(a(a(b(c(x1)))))))))) | (2) |
b(c(a(a(b(c(a(x1))))))) | → | b(a(a(b(c(c(a(a(b(c(x1)))))))))) | (3) |
a(c(a(a(b(c(a(x1))))))) | → | a(a(a(b(c(c(a(a(b(c(x1)))))))))) | (4) |
As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):
[c(x1)] | = | 3x1 + 0 |
[b(x1)] | = | 3x1 + 1 |
[a(x1)] | = | 3x1 + 2 |
c0(c2(a2(a1(b0(c2(a0(x1))))))) | → | c2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (5) |
c0(c2(a2(a1(b0(c2(a2(x1))))))) | → | c2(a2(a1(b0(c0(c2(a2(a1(b0(c2(x1)))))))))) | (6) |
c0(c2(a2(a1(b0(c2(a1(x1))))))) | → | c2(a2(a1(b0(c0(c2(a2(a1(b0(c1(x1)))))))))) | (7) |
a0(c2(a2(a1(b0(c2(a0(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (8) |
a0(c2(a2(a1(b0(c2(a2(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c2(x1)))))))))) | (9) |
a0(c2(a2(a1(b0(c2(a1(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c1(x1)))))))))) | (10) |
b0(c2(a2(a1(b0(c2(a0(x1))))))) | → | b2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (11) |
b0(c2(a2(a1(b0(c2(a2(x1))))))) | → | b2(a2(a1(b0(c0(c2(a2(a1(b0(c2(x1)))))))))) | (12) |
b0(c2(a2(a1(b0(c2(a1(x1))))))) | → | b2(a2(a1(b0(c0(c2(a2(a1(b0(c1(x1)))))))))) | (13) |
[c0(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
c0(c2(a2(a1(b0(c2(a0(x1))))))) | → | c2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (5) |
a0(c2(a2(a1(b0(c2(a0(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (8) |
a0(c2(a2(a1(b0(c2(a2(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c2(x1)))))))))) | (9) |
a0(c2(a2(a1(b0(c2(a1(x1))))))) | → | a2(a2(a1(b0(c0(c2(a2(a1(b0(c1(x1)))))))))) | (10) |
b0(c2(a2(a1(b0(c2(a0(x1))))))) | → | b2(a2(a1(b0(c0(c2(a2(a1(b0(c0(x1)))))))))) | (11) |
a2(c2(b0(a1(a2(c2(c0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (14) |
a1(c2(b0(a1(a2(c2(c0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (15) |
a2(c2(b0(a1(a2(c2(b0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (16) |
a1(c2(b0(a1(a2(c2(b0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (17) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (18) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(c0(b0(a1(a2(c2(x1)))))))) | (19) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (20) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(c0(b0(a1(a2(c2(x1))))))) | (21) |
a1#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a1#(a2(c2(c0(b0(a1(a2(b2(x1)))))))) | (22) |
a1#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a1#(a2(b2(x1))) | (23) |
a1#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a2#(c2(c0(b0(a1(a2(b2(x1))))))) | (24) |
a1#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a2#(b2(x1)) | (25) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (26) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(c0(b0(a1(a2(c2(x1)))))))) | (27) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (28) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(c0(b0(a1(a2(c2(x1))))))) | (29) |
a2#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a1#(a2(c2(c0(b0(a1(a2(b2(x1)))))))) | (30) |
a2#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a1#(a2(b2(x1))) | (31) |
a2#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a2#(c2(c0(b0(a1(a2(b2(x1))))))) | (32) |
a2#(c2(b0(a1(a2(c2(b0(x1))))))) | → | a2#(b2(x1)) | (33) |
The dependency pairs are split into 1 component.
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (18) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (20) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (26) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (28) |
[c0(x1)] | = |
|
||||||||
[c1(x1)] | = |
|
||||||||
[c2(x1)] | = |
|
||||||||
[b0(x1)] | = |
|
||||||||
[b2(x1)] | = |
|
||||||||
[a1(x1)] | = |
|
||||||||
[a2(x1)] | = |
|
||||||||
[a1#(x1)] | = |
|
||||||||
[a2#(x1)] | = |
|
a2(c2(b0(a1(a2(c2(c0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (14) |
a1(c2(b0(a1(a2(c2(c0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (15) |
a2(c2(b0(a1(a2(c2(b0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (16) |
a1(c2(b0(a1(a2(c2(b0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (17) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (20) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (26) |
a2#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a2#(c2(x1)) | (28) |
The dependency pairs are split into 1 component.
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (18) |
[c0(x1)] | = |
|
||||||||
[c1(x1)] | = |
|
||||||||
[c2(x1)] | = |
|
||||||||
[b0(x1)] | = |
|
||||||||
[b2(x1)] | = |
|
||||||||
[a1(x1)] | = |
|
||||||||
[a2(x1)] | = |
|
||||||||
[a1#(x1)] | = |
|
a2(c2(b0(a1(a2(c2(c0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (14) |
a1(c2(b0(a1(a2(c2(c0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(c2(x1)))))))))) | (15) |
a2(c2(b0(a1(a2(c2(b0(x1))))))) | → | c2(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (16) |
a1(c2(b0(a1(a2(c2(b0(x1))))))) | → | c1(b0(a1(a2(c2(c0(b0(a1(a2(b2(x1)))))))))) | (17) |
a1#(c2(b0(a1(a2(c2(c0(x1))))))) | → | a1#(a2(c2(x1))) | (18) |
The dependency pairs are split into 0 components.