Certification Problem
Input (TPDB SRS_Standard/ICFP_2010/160263)
The rewrite relation of the following TRS is considered.
0(1(2(2(x1)))) |
→ |
0(1(0(2(2(x1))))) |
(1) |
0(1(2(2(x1)))) |
→ |
0(1(2(3(2(x1))))) |
(2) |
0(1(2(2(x1)))) |
→ |
0(2(2(1(3(x1))))) |
(3) |
0(1(2(2(x1)))) |
→ |
1(0(3(2(2(x1))))) |
(4) |
0(1(2(2(x1)))) |
→ |
1(2(0(3(2(x1))))) |
(5) |
0(1(2(2(x1)))) |
→ |
1(3(0(2(2(x1))))) |
(6) |
0(1(2(2(x1)))) |
→ |
1(3(2(0(2(x1))))) |
(7) |
0(1(2(2(x1)))) |
→ |
0(1(0(4(2(2(x1)))))) |
(8) |
0(1(2(2(x1)))) |
→ |
0(2(1(3(2(3(x1)))))) |
(9) |
0(1(2(2(x1)))) |
→ |
1(2(1(0(4(2(x1)))))) |
(10) |
0(1(2(2(x1)))) |
→ |
1(5(0(4(2(2(x1)))))) |
(11) |
0(1(2(2(x1)))) |
→ |
2(0(3(1(3(2(x1)))))) |
(12) |
0(1(2(2(x1)))) |
→ |
2(1(1(0(4(2(x1)))))) |
(13) |
0(1(2(2(x1)))) |
→ |
2(1(3(0(2(0(x1)))))) |
(14) |
0(1(2(2(x1)))) |
→ |
2(1(3(3(2(0(x1)))))) |
(15) |
0(1(2(2(x1)))) |
→ |
2(1(5(3(0(2(x1)))))) |
(16) |
0(1(2(2(x1)))) |
→ |
2(2(1(3(0(5(x1)))))) |
(17) |
0(1(2(2(x1)))) |
→ |
2(4(1(3(2(0(x1)))))) |
(18) |
0(1(4(5(x1)))) |
→ |
1(5(0(4(1(x1))))) |
(19) |
0(1(4(5(x1)))) |
→ |
5(0(4(1(5(x1))))) |
(20) |
0(1(4(5(x1)))) |
→ |
5(4(1(5(0(x1))))) |
(21) |
0(1(4(5(x1)))) |
→ |
1(1(5(0(4(1(x1)))))) |
(22) |
0(1(4(5(x1)))) |
→ |
5(4(1(5(5(0(x1)))))) |
(23) |
5(1(2(2(x1)))) |
→ |
1(0(2(2(5(x1))))) |
(24) |
5(1(2(2(x1)))) |
→ |
1(3(5(2(2(x1))))) |
(25) |
5(1(2(2(x1)))) |
→ |
1(5(2(3(2(x1))))) |
(26) |
5(1(2(2(x1)))) |
→ |
1(5(0(2(2(3(x1)))))) |
(27) |
5(1(2(2(x1)))) |
→ |
2(1(0(3(2(5(x1)))))) |
(28) |
5(1(2(2(x1)))) |
→ |
3(1(3(5(2(2(x1)))))) |
(29) |
5(1(2(2(x1)))) |
→ |
4(1(3(2(2(5(x1)))))) |
(30) |
5(1(2(2(x1)))) |
→ |
5(1(0(4(2(2(x1)))))) |
(31) |
5(1(2(2(x1)))) |
→ |
5(1(2(0(4(2(x1)))))) |
(32) |
0(1(1(4(5(x1))))) |
→ |
3(1(0(4(1(5(x1)))))) |
(33) |
0(1(2(2(2(x1))))) |
→ |
1(0(2(2(5(2(x1)))))) |
(34) |
0(1(2(2(5(x1))))) |
→ |
1(5(0(4(2(2(x1)))))) |
(35) |
0(1(2(4(5(x1))))) |
→ |
2(5(1(0(4(5(x1)))))) |
(36) |
0(1(4(5(2(x1))))) |
→ |
1(0(4(2(0(5(x1)))))) |
(37) |
0(1(4(5(5(x1))))) |
→ |
5(0(4(0(1(5(x1)))))) |
(38) |
0(1(5(4(5(x1))))) |
→ |
1(5(0(4(1(5(x1)))))) |
(39) |
0(5(1(2(2(x1))))) |
→ |
0(1(3(2(5(2(x1)))))) |
(40) |
3(3(1(2(2(x1))))) |
→ |
1(3(2(0(3(2(x1)))))) |
(41) |
3(4(4(0(5(x1))))) |
→ |
3(5(4(5(0(4(x1)))))) |
(42) |
5(0(1(2(2(x1))))) |
→ |
1(3(2(0(5(2(x1)))))) |
(43) |
5(1(2(2(5(x1))))) |
→ |
1(5(2(3(2(5(x1)))))) |
(44) |
5(2(1(2(2(x1))))) |
→ |
2(1(3(5(2(2(x1)))))) |
(45) |
5(2(4(0(5(x1))))) |
→ |
0(4(2(5(5(5(x1)))))) |
(46) |
5(2(4(0(5(x1))))) |
→ |
0(4(5(4(2(5(x1)))))) |
(47) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by ttt2 @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
0#(1(2(2(x1)))) |
→ |
0#(2(2(x1))) |
(48) |
0#(1(2(2(x1)))) |
→ |
0#(1(0(2(2(x1))))) |
(49) |
0#(1(2(2(x1)))) |
→ |
3#(2(x1)) |
(50) |
0#(1(2(2(x1)))) |
→ |
0#(1(2(3(2(x1))))) |
(51) |
0#(1(2(2(x1)))) |
→ |
3#(x1) |
(52) |
0#(1(2(2(x1)))) |
→ |
0#(2(2(1(3(x1))))) |
(53) |
0#(1(2(2(x1)))) |
→ |
3#(2(2(x1))) |
(54) |
0#(1(2(2(x1)))) |
→ |
0#(3(2(2(x1)))) |
(55) |
0#(1(2(2(x1)))) |
→ |
0#(3(2(x1))) |
(56) |
0#(1(2(2(x1)))) |
→ |
3#(0(2(2(x1)))) |
(57) |
0#(1(2(2(x1)))) |
→ |
0#(2(x1)) |
(58) |
0#(1(2(2(x1)))) |
→ |
3#(2(0(2(x1)))) |
(59) |
0#(1(2(2(x1)))) |
→ |
0#(4(2(2(x1)))) |
(60) |
0#(1(2(2(x1)))) |
→ |
0#(1(0(4(2(2(x1)))))) |
(61) |
0#(1(2(2(x1)))) |
→ |
3#(2(3(x1))) |
(62) |
0#(1(2(2(x1)))) |
→ |
0#(2(1(3(2(3(x1)))))) |
(63) |
0#(1(2(2(x1)))) |
→ |
0#(4(2(x1))) |
(64) |
0#(1(2(2(x1)))) |
→ |
5#(0(4(2(2(x1))))) |
(65) |
0#(1(2(2(x1)))) |
→ |
3#(1(3(2(x1)))) |
(66) |
0#(1(2(2(x1)))) |
→ |
0#(3(1(3(2(x1))))) |
(67) |
0#(1(2(2(x1)))) |
→ |
0#(x1) |
(68) |
0#(1(2(2(x1)))) |
→ |
0#(2(0(x1))) |
(69) |
0#(1(2(2(x1)))) |
→ |
3#(0(2(0(x1)))) |
(70) |
0#(1(2(2(x1)))) |
→ |
3#(2(0(x1))) |
(71) |
0#(1(2(2(x1)))) |
→ |
3#(3(2(0(x1)))) |
(72) |
0#(1(2(2(x1)))) |
→ |
3#(0(2(x1))) |
(73) |
0#(1(2(2(x1)))) |
→ |
5#(3(0(2(x1)))) |
(74) |
0#(1(2(2(x1)))) |
→ |
5#(x1) |
(75) |
0#(1(2(2(x1)))) |
→ |
0#(5(x1)) |
(76) |
0#(1(2(2(x1)))) |
→ |
3#(0(5(x1))) |
(77) |
0#(1(4(5(x1)))) |
→ |
0#(4(1(x1))) |
(78) |
0#(1(4(5(x1)))) |
→ |
5#(0(4(1(x1)))) |
(79) |
0#(1(4(5(x1)))) |
→ |
0#(4(1(5(x1)))) |
(80) |
0#(1(4(5(x1)))) |
→ |
5#(0(4(1(5(x1))))) |
(81) |
0#(1(4(5(x1)))) |
→ |
0#(x1) |
(82) |
0#(1(4(5(x1)))) |
→ |
5#(0(x1)) |
(83) |
0#(1(4(5(x1)))) |
→ |
5#(4(1(5(0(x1))))) |
(84) |
0#(1(4(5(x1)))) |
→ |
5#(5(0(x1))) |
(85) |
0#(1(4(5(x1)))) |
→ |
5#(4(1(5(5(0(x1)))))) |
(86) |
5#(1(2(2(x1)))) |
→ |
5#(x1) |
(87) |
5#(1(2(2(x1)))) |
→ |
0#(2(2(5(x1)))) |
(88) |
5#(1(2(2(x1)))) |
→ |
5#(2(2(x1))) |
(89) |
5#(1(2(2(x1)))) |
→ |
3#(5(2(2(x1)))) |
(90) |
5#(1(2(2(x1)))) |
→ |
3#(2(x1)) |
(91) |
5#(1(2(2(x1)))) |
→ |
5#(2(3(2(x1)))) |
(92) |
5#(1(2(2(x1)))) |
→ |
3#(x1) |
(93) |
5#(1(2(2(x1)))) |
→ |
0#(2(2(3(x1)))) |
(94) |
5#(1(2(2(x1)))) |
→ |
5#(0(2(2(3(x1))))) |
(95) |
5#(1(2(2(x1)))) |
→ |
3#(2(5(x1))) |
(96) |
5#(1(2(2(x1)))) |
→ |
0#(3(2(5(x1)))) |
(97) |
5#(1(2(2(x1)))) |
→ |
3#(1(3(5(2(2(x1)))))) |
(98) |
5#(1(2(2(x1)))) |
→ |
3#(2(2(5(x1)))) |
(99) |
5#(1(2(2(x1)))) |
→ |
0#(4(2(2(x1)))) |
(100) |
5#(1(2(2(x1)))) |
→ |
5#(1(0(4(2(2(x1)))))) |
(101) |
5#(1(2(2(x1)))) |
→ |
0#(4(2(x1))) |
(102) |
5#(1(2(2(x1)))) |
→ |
5#(1(2(0(4(2(x1)))))) |
(103) |
0#(1(1(4(5(x1))))) |
→ |
0#(4(1(5(x1)))) |
(104) |
0#(1(1(4(5(x1))))) |
→ |
3#(1(0(4(1(5(x1)))))) |
(105) |
0#(1(2(2(2(x1))))) |
→ |
5#(2(x1)) |
(106) |
0#(1(2(2(2(x1))))) |
→ |
0#(2(2(5(2(x1))))) |
(107) |
0#(1(2(2(5(x1))))) |
→ |
0#(4(2(2(x1)))) |
(108) |
0#(1(2(2(5(x1))))) |
→ |
5#(0(4(2(2(x1))))) |
(109) |
0#(1(2(4(5(x1))))) |
→ |
0#(4(5(x1))) |
(110) |
0#(1(2(4(5(x1))))) |
→ |
5#(1(0(4(5(x1))))) |
(111) |
0#(1(4(5(2(x1))))) |
→ |
5#(x1) |
(112) |
0#(1(4(5(2(x1))))) |
→ |
0#(5(x1)) |
(113) |
0#(1(4(5(2(x1))))) |
→ |
0#(4(2(0(5(x1))))) |
(114) |
0#(1(4(5(5(x1))))) |
→ |
0#(1(5(x1))) |
(115) |
0#(1(4(5(5(x1))))) |
→ |
0#(4(0(1(5(x1))))) |
(116) |
0#(1(4(5(5(x1))))) |
→ |
5#(0(4(0(1(5(x1)))))) |
(117) |
0#(1(5(4(5(x1))))) |
→ |
0#(4(1(5(x1)))) |
(118) |
0#(1(5(4(5(x1))))) |
→ |
5#(0(4(1(5(x1))))) |
(119) |
0#(5(1(2(2(x1))))) |
→ |
5#(2(x1)) |
(120) |
0#(5(1(2(2(x1))))) |
→ |
3#(2(5(2(x1)))) |
(121) |
0#(5(1(2(2(x1))))) |
→ |
0#(1(3(2(5(2(x1)))))) |
(122) |
3#(3(1(2(2(x1))))) |
→ |
3#(2(x1)) |
(123) |
3#(3(1(2(2(x1))))) |
→ |
0#(3(2(x1))) |
(124) |
3#(3(1(2(2(x1))))) |
→ |
3#(2(0(3(2(x1))))) |
(125) |
3#(4(4(0(5(x1))))) |
→ |
0#(4(x1)) |
(126) |
3#(4(4(0(5(x1))))) |
→ |
5#(0(4(x1))) |
(127) |
3#(4(4(0(5(x1))))) |
→ |
5#(4(5(0(4(x1))))) |
(128) |
3#(4(4(0(5(x1))))) |
→ |
3#(5(4(5(0(4(x1)))))) |
(129) |
5#(0(1(2(2(x1))))) |
→ |
5#(2(x1)) |
(130) |
5#(0(1(2(2(x1))))) |
→ |
0#(5(2(x1))) |
(131) |
5#(0(1(2(2(x1))))) |
→ |
3#(2(0(5(2(x1))))) |
(132) |
5#(1(2(2(5(x1))))) |
→ |
3#(2(5(x1))) |
(133) |
5#(1(2(2(5(x1))))) |
→ |
5#(2(3(2(5(x1))))) |
(134) |
5#(2(1(2(2(x1))))) |
→ |
5#(2(2(x1))) |
(135) |
5#(2(1(2(2(x1))))) |
→ |
3#(5(2(2(x1)))) |
(136) |
5#(2(4(0(5(x1))))) |
→ |
5#(5(x1)) |
(137) |
5#(2(4(0(5(x1))))) |
→ |
5#(5(5(x1))) |
(138) |
5#(2(4(0(5(x1))))) |
→ |
0#(4(2(5(5(5(x1)))))) |
(139) |
5#(2(4(0(5(x1))))) |
→ |
5#(4(2(5(x1)))) |
(140) |
5#(2(4(0(5(x1))))) |
→ |
0#(4(5(4(2(5(x1)))))) |
(141) |
1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.