Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/160263)

The rewrite relation of the following TRS is considered.

0(1(2(2(x1)))) 0(1(0(2(2(x1))))) (1)
0(1(2(2(x1)))) 0(1(2(3(2(x1))))) (2)
0(1(2(2(x1)))) 0(2(2(1(3(x1))))) (3)
0(1(2(2(x1)))) 1(0(3(2(2(x1))))) (4)
0(1(2(2(x1)))) 1(2(0(3(2(x1))))) (5)
0(1(2(2(x1)))) 1(3(0(2(2(x1))))) (6)
0(1(2(2(x1)))) 1(3(2(0(2(x1))))) (7)
0(1(2(2(x1)))) 0(1(0(4(2(2(x1)))))) (8)
0(1(2(2(x1)))) 0(2(1(3(2(3(x1)))))) (9)
0(1(2(2(x1)))) 1(2(1(0(4(2(x1)))))) (10)
0(1(2(2(x1)))) 1(5(0(4(2(2(x1)))))) (11)
0(1(2(2(x1)))) 2(0(3(1(3(2(x1)))))) (12)
0(1(2(2(x1)))) 2(1(1(0(4(2(x1)))))) (13)
0(1(2(2(x1)))) 2(1(3(0(2(0(x1)))))) (14)
0(1(2(2(x1)))) 2(1(3(3(2(0(x1)))))) (15)
0(1(2(2(x1)))) 2(1(5(3(0(2(x1)))))) (16)
0(1(2(2(x1)))) 2(2(1(3(0(5(x1)))))) (17)
0(1(2(2(x1)))) 2(4(1(3(2(0(x1)))))) (18)
0(1(4(5(x1)))) 1(5(0(4(1(x1))))) (19)
0(1(4(5(x1)))) 5(0(4(1(5(x1))))) (20)
0(1(4(5(x1)))) 5(4(1(5(0(x1))))) (21)
0(1(4(5(x1)))) 1(1(5(0(4(1(x1)))))) (22)
0(1(4(5(x1)))) 5(4(1(5(5(0(x1)))))) (23)
5(1(2(2(x1)))) 1(0(2(2(5(x1))))) (24)
5(1(2(2(x1)))) 1(3(5(2(2(x1))))) (25)
5(1(2(2(x1)))) 1(5(2(3(2(x1))))) (26)
5(1(2(2(x1)))) 1(5(0(2(2(3(x1)))))) (27)
5(1(2(2(x1)))) 2(1(0(3(2(5(x1)))))) (28)
5(1(2(2(x1)))) 3(1(3(5(2(2(x1)))))) (29)
5(1(2(2(x1)))) 4(1(3(2(2(5(x1)))))) (30)
5(1(2(2(x1)))) 5(1(0(4(2(2(x1)))))) (31)
5(1(2(2(x1)))) 5(1(2(0(4(2(x1)))))) (32)
0(1(1(4(5(x1))))) 3(1(0(4(1(5(x1)))))) (33)
0(1(2(2(2(x1))))) 1(0(2(2(5(2(x1)))))) (34)
0(1(2(2(5(x1))))) 1(5(0(4(2(2(x1)))))) (35)
0(1(2(4(5(x1))))) 2(5(1(0(4(5(x1)))))) (36)
0(1(4(5(2(x1))))) 1(0(4(2(0(5(x1)))))) (37)
0(1(4(5(5(x1))))) 5(0(4(0(1(5(x1)))))) (38)
0(1(5(4(5(x1))))) 1(5(0(4(1(5(x1)))))) (39)
0(5(1(2(2(x1))))) 0(1(3(2(5(2(x1)))))) (40)
3(3(1(2(2(x1))))) 1(3(2(0(3(2(x1)))))) (41)
3(4(4(0(5(x1))))) 3(5(4(5(0(4(x1)))))) (42)
5(0(1(2(2(x1))))) 1(3(2(0(5(2(x1)))))) (43)
5(1(2(2(5(x1))))) 1(5(2(3(2(5(x1)))))) (44)
5(2(1(2(2(x1))))) 2(1(3(5(2(2(x1)))))) (45)
5(2(4(0(5(x1))))) 0(4(2(5(5(5(x1)))))) (46)
5(2(4(0(5(x1))))) 0(4(5(4(2(5(x1)))))) (47)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
0#(1(2(2(x1)))) 0#(2(2(x1))) (48)
0#(1(2(2(x1)))) 0#(1(0(2(2(x1))))) (49)
0#(1(2(2(x1)))) 3#(2(x1)) (50)
0#(1(2(2(x1)))) 0#(1(2(3(2(x1))))) (51)
0#(1(2(2(x1)))) 3#(x1) (52)
0#(1(2(2(x1)))) 0#(2(2(1(3(x1))))) (53)
0#(1(2(2(x1)))) 3#(2(2(x1))) (54)
0#(1(2(2(x1)))) 0#(3(2(2(x1)))) (55)
0#(1(2(2(x1)))) 0#(3(2(x1))) (56)
0#(1(2(2(x1)))) 3#(0(2(2(x1)))) (57)
0#(1(2(2(x1)))) 0#(2(x1)) (58)
0#(1(2(2(x1)))) 3#(2(0(2(x1)))) (59)
0#(1(2(2(x1)))) 0#(4(2(2(x1)))) (60)
0#(1(2(2(x1)))) 0#(1(0(4(2(2(x1)))))) (61)
0#(1(2(2(x1)))) 3#(2(3(x1))) (62)
0#(1(2(2(x1)))) 0#(2(1(3(2(3(x1)))))) (63)
0#(1(2(2(x1)))) 0#(4(2(x1))) (64)
0#(1(2(2(x1)))) 5#(0(4(2(2(x1))))) (65)
0#(1(2(2(x1)))) 3#(1(3(2(x1)))) (66)
0#(1(2(2(x1)))) 0#(3(1(3(2(x1))))) (67)
0#(1(2(2(x1)))) 0#(x1) (68)
0#(1(2(2(x1)))) 0#(2(0(x1))) (69)
0#(1(2(2(x1)))) 3#(0(2(0(x1)))) (70)
0#(1(2(2(x1)))) 3#(2(0(x1))) (71)
0#(1(2(2(x1)))) 3#(3(2(0(x1)))) (72)
0#(1(2(2(x1)))) 3#(0(2(x1))) (73)
0#(1(2(2(x1)))) 5#(3(0(2(x1)))) (74)
0#(1(2(2(x1)))) 5#(x1) (75)
0#(1(2(2(x1)))) 0#(5(x1)) (76)
0#(1(2(2(x1)))) 3#(0(5(x1))) (77)
0#(1(4(5(x1)))) 0#(4(1(x1))) (78)
0#(1(4(5(x1)))) 5#(0(4(1(x1)))) (79)
0#(1(4(5(x1)))) 0#(4(1(5(x1)))) (80)
0#(1(4(5(x1)))) 5#(0(4(1(5(x1))))) (81)
0#(1(4(5(x1)))) 0#(x1) (82)
0#(1(4(5(x1)))) 5#(0(x1)) (83)
0#(1(4(5(x1)))) 5#(4(1(5(0(x1))))) (84)
0#(1(4(5(x1)))) 5#(5(0(x1))) (85)
0#(1(4(5(x1)))) 5#(4(1(5(5(0(x1)))))) (86)
5#(1(2(2(x1)))) 5#(x1) (87)
5#(1(2(2(x1)))) 0#(2(2(5(x1)))) (88)
5#(1(2(2(x1)))) 5#(2(2(x1))) (89)
5#(1(2(2(x1)))) 3#(5(2(2(x1)))) (90)
5#(1(2(2(x1)))) 3#(2(x1)) (91)
5#(1(2(2(x1)))) 5#(2(3(2(x1)))) (92)
5#(1(2(2(x1)))) 3#(x1) (93)
5#(1(2(2(x1)))) 0#(2(2(3(x1)))) (94)
5#(1(2(2(x1)))) 5#(0(2(2(3(x1))))) (95)
5#(1(2(2(x1)))) 3#(2(5(x1))) (96)
5#(1(2(2(x1)))) 0#(3(2(5(x1)))) (97)
5#(1(2(2(x1)))) 3#(1(3(5(2(2(x1)))))) (98)
5#(1(2(2(x1)))) 3#(2(2(5(x1)))) (99)
5#(1(2(2(x1)))) 0#(4(2(2(x1)))) (100)
5#(1(2(2(x1)))) 5#(1(0(4(2(2(x1)))))) (101)
5#(1(2(2(x1)))) 0#(4(2(x1))) (102)
5#(1(2(2(x1)))) 5#(1(2(0(4(2(x1)))))) (103)
0#(1(1(4(5(x1))))) 0#(4(1(5(x1)))) (104)
0#(1(1(4(5(x1))))) 3#(1(0(4(1(5(x1)))))) (105)
0#(1(2(2(2(x1))))) 5#(2(x1)) (106)
0#(1(2(2(2(x1))))) 0#(2(2(5(2(x1))))) (107)
0#(1(2(2(5(x1))))) 0#(4(2(2(x1)))) (108)
0#(1(2(2(5(x1))))) 5#(0(4(2(2(x1))))) (109)
0#(1(2(4(5(x1))))) 0#(4(5(x1))) (110)
0#(1(2(4(5(x1))))) 5#(1(0(4(5(x1))))) (111)
0#(1(4(5(2(x1))))) 5#(x1) (112)
0#(1(4(5(2(x1))))) 0#(5(x1)) (113)
0#(1(4(5(2(x1))))) 0#(4(2(0(5(x1))))) (114)
0#(1(4(5(5(x1))))) 0#(1(5(x1))) (115)
0#(1(4(5(5(x1))))) 0#(4(0(1(5(x1))))) (116)
0#(1(4(5(5(x1))))) 5#(0(4(0(1(5(x1)))))) (117)
0#(1(5(4(5(x1))))) 0#(4(1(5(x1)))) (118)
0#(1(5(4(5(x1))))) 5#(0(4(1(5(x1))))) (119)
0#(5(1(2(2(x1))))) 5#(2(x1)) (120)
0#(5(1(2(2(x1))))) 3#(2(5(2(x1)))) (121)
0#(5(1(2(2(x1))))) 0#(1(3(2(5(2(x1)))))) (122)
3#(3(1(2(2(x1))))) 3#(2(x1)) (123)
3#(3(1(2(2(x1))))) 0#(3(2(x1))) (124)
3#(3(1(2(2(x1))))) 3#(2(0(3(2(x1))))) (125)
3#(4(4(0(5(x1))))) 0#(4(x1)) (126)
3#(4(4(0(5(x1))))) 5#(0(4(x1))) (127)
3#(4(4(0(5(x1))))) 5#(4(5(0(4(x1))))) (128)
3#(4(4(0(5(x1))))) 3#(5(4(5(0(4(x1)))))) (129)
5#(0(1(2(2(x1))))) 5#(2(x1)) (130)
5#(0(1(2(2(x1))))) 0#(5(2(x1))) (131)
5#(0(1(2(2(x1))))) 3#(2(0(5(2(x1))))) (132)
5#(1(2(2(5(x1))))) 3#(2(5(x1))) (133)
5#(1(2(2(5(x1))))) 5#(2(3(2(5(x1))))) (134)
5#(2(1(2(2(x1))))) 5#(2(2(x1))) (135)
5#(2(1(2(2(x1))))) 3#(5(2(2(x1)))) (136)
5#(2(4(0(5(x1))))) 5#(5(x1)) (137)
5#(2(4(0(5(x1))))) 5#(5(5(x1))) (138)
5#(2(4(0(5(x1))))) 0#(4(2(5(5(5(x1)))))) (139)
5#(2(4(0(5(x1))))) 5#(4(2(5(x1)))) (140)
5#(2(4(0(5(x1))))) 0#(4(5(4(2(5(x1)))))) (141)

1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.