Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/212263)

The rewrite relation of the following TRS is considered.

0(1(2(x1))) 0(2(1(1(x1)))) (1)
0(1(2(x1))) 0(2(1(3(x1)))) (2)
0(1(2(x1))) 0(2(1(1(3(x1))))) (3)
0(1(2(x1))) 0(2(4(1(1(x1))))) (4)
0(1(2(x1))) 0(2(4(1(3(x1))))) (5)
0(3(2(x1))) 0(2(1(3(x1)))) (6)
0(3(2(x1))) 0(2(1(1(3(x1))))) (7)
0(3(2(x1))) 0(0(2(1(1(3(x1)))))) (8)
0(1(1(2(x1)))) 0(2(1(1(3(x1))))) (9)
0(1(2(2(x1)))) 0(2(2(1(1(x1))))) (10)
0(1(2(2(x1)))) 0(2(3(2(1(x1))))) (11)
0(1(3(2(x1)))) 0(2(1(4(3(x1))))) (12)
0(1(3(2(x1)))) 3(3(0(2(1(x1))))) (13)
0(1(3(2(x1)))) 3(0(2(4(1(1(x1)))))) (14)
0(1(5(2(x1)))) 5(0(2(1(1(x1))))) (15)
0(3(2(2(x1)))) 0(0(2(3(2(x1))))) (16)
0(3(2(2(x1)))) 0(0(4(2(3(2(x1)))))) (17)
2(0(3(2(x1)))) 1(3(0(2(2(x1))))) (18)
3(0(3(2(x1)))) 3(0(0(0(2(3(x1)))))) (19)
3(1(5(2(x1)))) 0(2(1(5(3(x1))))) (20)
3(3(5(2(x1)))) 3(0(2(1(5(3(x1)))))) (21)
4(5(2(2(x1)))) 2(5(0(2(4(1(x1)))))) (22)
5(0(1(2(x1)))) 0(2(1(3(4(5(x1)))))) (23)
5(0(2(2(x1)))) 2(0(2(4(1(5(x1)))))) (24)
5(0(3(2(x1)))) 3(0(2(1(4(5(x1)))))) (25)
5(1(2(2(x1)))) 0(2(1(5(2(1(x1)))))) (26)
5(1(2(2(x1)))) 2(1(5(2(1(1(x1)))))) (27)
0(1(2(4(2(x1))))) 4(2(1(0(2(1(x1)))))) (28)
0(1(2(5(2(x1))))) 2(0(2(1(5(4(x1)))))) (29)
0(1(5(1(2(x1))))) 1(0(2(1(1(5(x1)))))) (30)
0(1(5(5(2(x1))))) 0(2(1(5(5(1(x1)))))) (31)
0(5(0(1(2(x1))))) 0(4(5(0(2(1(x1)))))) (32)
0(5(0(3(2(x1))))) 0(5(0(0(2(3(x1)))))) (33)
0(5(5(2(2(x1))))) 0(2(1(5(5(2(x1)))))) (34)
3(0(3(1(2(x1))))) 1(3(3(0(2(3(x1)))))) (35)
3(0(3(4(2(x1))))) 1(3(4(0(2(3(x1)))))) (36)
4(5(1(4(2(x1))))) 2(4(4(4(1(5(x1)))))) (37)
5(0(1(3(2(x1))))) 3(5(0(2(1(3(x1)))))) (38)
5(0(3(1(2(x1))))) 0(2(1(4(3(5(x1)))))) (39)
5(0(4(2(2(x1))))) 2(0(2(4(1(5(x1)))))) (40)
5(1(0(3(2(x1))))) 0(4(3(5(1(2(x1)))))) (41)
5(1(0(3(2(x1))))) 5(3(1(1(0(2(x1)))))) (42)
5(1(0(5(2(x1))))) 3(5(5(0(2(1(x1)))))) (43)
5(1(0(5(2(x1))))) 5(0(2(1(5(5(x1)))))) (44)
5(2(0(3(2(x1))))) 0(2(5(2(3(1(x1)))))) (45)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
2(1(0(x1))) 1(1(2(0(x1)))) (46)
2(1(0(x1))) 3(1(2(0(x1)))) (47)
2(1(0(x1))) 3(1(1(2(0(x1))))) (48)
2(1(0(x1))) 1(1(4(2(0(x1))))) (49)
2(1(0(x1))) 3(1(4(2(0(x1))))) (50)
2(3(0(x1))) 3(1(2(0(x1)))) (51)
2(3(0(x1))) 3(1(1(2(0(x1))))) (52)
2(3(0(x1))) 3(1(1(2(0(0(x1)))))) (53)
2(1(1(0(x1)))) 3(1(1(2(0(x1))))) (54)
2(2(1(0(x1)))) 1(1(2(2(0(x1))))) (55)
2(2(1(0(x1)))) 1(2(3(2(0(x1))))) (56)
2(3(1(0(x1)))) 3(4(1(2(0(x1))))) (57)
2(3(1(0(x1)))) 1(2(0(3(3(x1))))) (58)
2(3(1(0(x1)))) 1(1(4(2(0(3(x1)))))) (59)
2(5(1(0(x1)))) 1(1(2(0(5(x1))))) (60)
2(2(3(0(x1)))) 2(3(2(0(0(x1))))) (61)
2(2(3(0(x1)))) 2(3(2(4(0(0(x1)))))) (62)
2(3(0(2(x1)))) 2(2(0(3(1(x1))))) (63)
2(3(0(3(x1)))) 3(2(0(0(0(3(x1)))))) (64)
2(5(1(3(x1)))) 3(5(1(2(0(x1))))) (65)
2(5(3(3(x1)))) 3(5(1(2(0(3(x1)))))) (66)
2(2(5(4(x1)))) 1(4(2(0(5(2(x1)))))) (67)
2(1(0(5(x1)))) 5(4(3(1(2(0(x1)))))) (68)
2(2(0(5(x1)))) 5(1(4(2(0(2(x1)))))) (69)
2(3(0(5(x1)))) 5(4(1(2(0(3(x1)))))) (70)
2(2(1(5(x1)))) 1(2(5(1(2(0(x1)))))) (71)
2(2(1(5(x1)))) 1(1(2(5(1(2(x1)))))) (72)
2(4(2(1(0(x1))))) 1(2(0(1(2(4(x1)))))) (73)
2(5(2(1(0(x1))))) 4(5(1(2(0(2(x1)))))) (74)
2(1(5(1(0(x1))))) 5(1(1(2(0(1(x1)))))) (75)
2(5(5(1(0(x1))))) 1(5(5(1(2(0(x1)))))) (76)
2(1(0(5(0(x1))))) 1(2(0(5(4(0(x1)))))) (77)
2(3(0(5(0(x1))))) 3(2(0(0(5(0(x1)))))) (78)
2(2(5(5(0(x1))))) 2(5(5(1(2(0(x1)))))) (79)
2(1(3(0(3(x1))))) 3(2(0(3(3(1(x1)))))) (80)
2(4(3(0(3(x1))))) 3(2(0(4(3(1(x1)))))) (81)
2(4(1(5(4(x1))))) 5(1(4(4(4(2(x1)))))) (82)
2(3(1(0(5(x1))))) 3(1(2(0(5(3(x1)))))) (83)
2(1(3(0(5(x1))))) 5(3(4(1(2(0(x1)))))) (84)
2(2(4(0(5(x1))))) 5(1(4(2(0(2(x1)))))) (85)
2(3(0(1(5(x1))))) 2(1(5(3(4(0(x1)))))) (86)
2(3(0(1(5(x1))))) 2(0(1(1(3(5(x1)))))) (87)
2(5(0(1(5(x1))))) 1(2(0(5(5(3(x1)))))) (88)
2(5(0(1(5(x1))))) 5(5(1(2(0(5(x1)))))) (89)
2(3(0(2(5(x1))))) 1(3(2(5(2(0(x1)))))) (90)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
2#(1(0(x1))) 2#(0(x1)) (91)
2#(3(0(x1))) 2#(0(x1)) (92)
2#(3(0(x1))) 2#(0(0(x1))) (93)
2#(1(1(0(x1)))) 2#(0(x1)) (94)
2#(2(1(0(x1)))) 2#(0(x1)) (95)
2#(2(1(0(x1)))) 2#(2(0(x1))) (96)
2#(2(1(0(x1)))) 2#(3(2(0(x1)))) (97)
2#(3(1(0(x1)))) 2#(0(x1)) (98)
2#(3(1(0(x1)))) 2#(0(3(3(x1)))) (99)
2#(3(1(0(x1)))) 2#(0(3(x1))) (100)
2#(5(1(0(x1)))) 2#(0(5(x1))) (101)
2#(2(3(0(x1)))) 2#(0(0(x1))) (102)
2#(2(3(0(x1)))) 2#(3(2(0(0(x1))))) (103)
2#(2(3(0(x1)))) 2#(4(0(0(x1)))) (104)
2#(2(3(0(x1)))) 2#(3(2(4(0(0(x1)))))) (105)
2#(3(0(2(x1)))) 2#(0(3(1(x1)))) (106)
2#(3(0(2(x1)))) 2#(2(0(3(1(x1))))) (107)
2#(3(0(3(x1)))) 2#(0(0(0(3(x1))))) (108)
2#(5(1(3(x1)))) 2#(0(x1)) (109)
2#(5(3(3(x1)))) 2#(0(3(x1))) (110)
2#(2(5(4(x1)))) 2#(x1) (111)
2#(2(5(4(x1)))) 2#(0(5(2(x1)))) (112)
2#(1(0(5(x1)))) 2#(0(x1)) (113)
2#(2(0(5(x1)))) 2#(x1) (114)
2#(2(0(5(x1)))) 2#(0(2(x1))) (115)
2#(3(0(5(x1)))) 2#(0(3(x1))) (116)
2#(2(1(5(x1)))) 2#(0(x1)) (117)
2#(2(1(5(x1)))) 2#(5(1(2(0(x1))))) (118)
2#(2(1(5(x1)))) 2#(x1) (119)
2#(2(1(5(x1)))) 2#(5(1(2(x1)))) (120)
2#(4(2(1(0(x1))))) 2#(4(x1)) (121)
2#(4(2(1(0(x1))))) 2#(0(1(2(4(x1))))) (122)
2#(5(2(1(0(x1))))) 2#(x1) (123)
2#(5(2(1(0(x1))))) 2#(0(2(x1))) (124)
2#(1(5(1(0(x1))))) 2#(0(1(x1))) (125)
2#(5(5(1(0(x1))))) 2#(0(x1)) (126)
2#(1(0(5(0(x1))))) 2#(0(5(4(0(x1))))) (127)
2#(3(0(5(0(x1))))) 2#(0(0(5(0(x1))))) (128)
2#(2(5(5(0(x1))))) 2#(0(x1)) (129)
2#(2(5(5(0(x1))))) 2#(5(5(1(2(0(x1)))))) (130)
2#(1(3(0(3(x1))))) 2#(0(3(3(1(x1))))) (131)
2#(4(3(0(3(x1))))) 2#(0(4(3(1(x1))))) (132)
2#(4(1(5(4(x1))))) 2#(x1) (133)
2#(3(1(0(5(x1))))) 2#(0(5(3(x1)))) (134)
2#(1(3(0(5(x1))))) 2#(0(x1)) (135)
2#(2(4(0(5(x1))))) 2#(x1) (136)
2#(2(4(0(5(x1))))) 2#(0(2(x1))) (137)
2#(3(0(1(5(x1))))) 2#(1(5(3(4(0(x1)))))) (138)
2#(3(0(1(5(x1))))) 2#(0(1(1(3(5(x1)))))) (139)
2#(5(0(1(5(x1))))) 2#(0(5(5(3(x1))))) (140)
2#(5(0(1(5(x1))))) 2#(0(5(x1))) (141)
2#(3(0(2(5(x1))))) 2#(0(x1)) (142)
2#(3(0(2(5(x1))))) 2#(5(2(0(x1)))) (143)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.