The rewrite relation of the following TRS is considered.
| 0(0(1(2(x1)))) | → | 0(2(0(1(1(x1))))) | (1) |
| 0(1(2(2(x1)))) | → | 0(2(2(1(0(x1))))) | (2) |
| 0(1(2(2(x1)))) | → | 1(0(2(2(0(x1))))) | (3) |
| 0(1(2(3(x1)))) | → | 0(2(0(1(3(x1))))) | (4) |
| 0(1(2(3(x1)))) | → | 0(2(3(3(1(x1))))) | (5) |
| 0(2(1(2(x1)))) | → | 0(2(2(0(1(x1))))) | (6) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(x1))))) | (7) |
| 0(2(1(2(x1)))) | → | 0(2(2(2(1(1(x1)))))) | (8) |
| 0(3(2(2(x1)))) | → | 3(4(0(2(2(x1))))) | (9) |
| 0(3(2(2(x1)))) | → | 0(2(2(2(2(3(x1)))))) | (10) |
| 0(4(1(2(x1)))) | → | 0(2(2(1(4(x1))))) | (11) |
| 0(4(1(2(x1)))) | → | 4(0(2(0(1(x1))))) | (12) |
| 0(5(0(1(x1)))) | → | 0(2(0(2(5(1(x1)))))) | (13) |
| 0(5(0(5(x1)))) | → | 0(2(0(5(5(x1))))) | (14) |
| 0(5(2(1(x1)))) | → | 0(2(2(5(1(x1))))) | (15) |
| 0(5(2(5(x1)))) | → | 0(2(2(5(5(x1))))) | (16) |
| 0(5(4(2(x1)))) | → | 4(0(2(2(0(5(x1)))))) | (17) |
| 2(1(0(3(x1)))) | → | 4(0(2(2(3(1(x1)))))) | (18) |
| 2(1(0(4(x1)))) | → | 1(4(0(2(2(2(x1)))))) | (19) |
| 2(5(4(2(x1)))) | → | 4(0(2(2(5(x1))))) | (20) |
| 0(0(1(0(4(x1))))) | → | 0(0(2(0(1(4(x1)))))) | (21) |
| 0(0(5(4(2(x1))))) | → | 0(4(0(0(2(5(x1)))))) | (22) |
| 0(1(0(1(2(x1))))) | → | 0(2(0(1(4(1(x1)))))) | (23) |
| 0(1(2(0(3(x1))))) | → | 0(2(0(4(1(3(x1)))))) | (24) |
| 0(1(2(2(2(x1))))) | → | 0(2(2(2(1(2(x1)))))) | (25) |
| 0(1(2(3(2(x1))))) | → | 1(3(4(0(2(2(x1)))))) | (26) |
| 0(1(3(2(3(x1))))) | → | 0(0(2(3(3(1(x1)))))) | (27) |
| 0(1(3(4(2(x1))))) | → | 0(2(3(4(1(1(x1)))))) | (28) |
| 0(2(1(0(1(x1))))) | → | 0(0(2(0(1(1(x1)))))) | (29) |
| 0(2(1(2(2(x1))))) | → | 0(2(0(2(2(1(x1)))))) | (30) |
| 0(2(3(0(5(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (31) |
| 0(3(0(1(3(x1))))) | → | 0(0(4(3(1(3(x1)))))) | (32) |
| 0(3(0(4(1(x1))))) | → | 0(0(1(4(4(3(x1)))))) | (33) |
| 0(3(2(0(4(x1))))) | → | 4(0(0(2(3(4(x1)))))) | (34) |
| 0(4(5(2(3(x1))))) | → | 0(2(2(3(4(5(x1)))))) | (35) |
| 0(5(0(0(3(x1))))) | → | 0(2(0(3(0(5(x1)))))) | (36) |
| 0(5(0(1(2(x1))))) | → | 0(0(2(0(1(5(x1)))))) | (37) |
| 0(5(1(4(2(x1))))) | → | 0(2(0(1(4(5(x1)))))) | (38) |
| 0(5(2(5(1(x1))))) | → | 0(2(0(5(5(1(x1)))))) | (39) |
| 2(1(0(0(4(x1))))) | → | 1(4(4(0(0(2(x1)))))) | (40) |
| 2(5(0(0(3(x1))))) | → | 0(2(0(0(5(3(x1)))))) | (41) |
| 2(5(3(0(1(x1))))) | → | 5(0(2(2(3(1(x1)))))) | (42) |
| 5(0(1(2(2(x1))))) | → | 5(1(0(2(0(2(x1)))))) | (43) |
| 5(2(0(1(2(x1))))) | → | 1(5(4(0(2(2(x1)))))) | (44) |
| 5(2(1(0(1(x1))))) | → | 0(2(3(1(5(1(x1)))))) | (45) |
| 5(2(3(0(1(x1))))) | → | 1(5(0(2(2(3(x1)))))) | (46) |
| 5(3(0(4(1(x1))))) | → | 4(5(0(2(3(1(x1)))))) | (47) |
| 2(1(0(0(x1)))) | → | 1(1(0(2(0(x1))))) | (48) |
| 2(2(1(0(x1)))) | → | 0(1(2(2(0(x1))))) | (49) |
| 2(2(1(0(x1)))) | → | 0(2(2(0(1(x1))))) | (50) |
| 3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
| 3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
| 2(1(2(0(x1)))) | → | 1(0(2(2(0(x1))))) | (53) |
| 2(1(2(0(x1)))) | → | 1(2(2(2(0(x1))))) | (54) |
| 2(1(2(0(x1)))) | → | 1(1(2(2(2(0(x1)))))) | (55) |
| 2(2(3(0(x1)))) | → | 2(2(0(4(3(x1))))) | (56) |
| 2(2(3(0(x1)))) | → | 3(2(2(2(2(0(x1)))))) | (57) |
| 2(1(4(0(x1)))) | → | 4(1(2(2(0(x1))))) | (58) |
| 2(1(4(0(x1)))) | → | 1(0(2(0(4(x1))))) | (59) |
| 1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
| 5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
| 1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
| 5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
| 2(4(5(0(x1)))) | → | 5(0(2(2(0(4(x1)))))) | (64) |
| 3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
| 4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
| 2(4(5(2(x1)))) | → | 5(2(2(0(4(x1))))) | (67) |
| 4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
| 2(4(5(0(0(x1))))) | → | 5(2(0(0(4(0(x1)))))) | (69) |
| 2(1(0(1(0(x1))))) | → | 1(4(1(0(2(0(x1)))))) | (70) |
| 3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
| 2(2(2(1(0(x1))))) | → | 2(1(2(2(2(0(x1)))))) | (72) |
| 2(3(2(1(0(x1))))) | → | 2(2(0(4(3(1(x1)))))) | (73) |
| 3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
| 2(4(3(1(0(x1))))) | → | 1(1(4(3(2(0(x1)))))) | (75) |
| 1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
| 2(2(1(2(0(x1))))) | → | 1(2(2(0(2(0(x1)))))) | (77) |
| 5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
| 3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
| 1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
| 4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
| 3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
| 3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
| 2(1(0(5(0(x1))))) | → | 5(1(0(2(0(0(x1)))))) | (84) |
| 2(4(1(5(0(x1))))) | → | 5(4(1(0(2(0(x1)))))) | (85) |
| 1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
| 4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
| 3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
| 1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
| 2(2(1(0(5(x1))))) | → | 2(0(2(0(1(5(x1)))))) | (90) |
| 2(1(0(2(5(x1))))) | → | 2(2(0(4(5(1(x1)))))) | (91) |
| 1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
| 1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
| 1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
There are 176 ruless (increase limit for explicit display).
The dependency pairs are split into 2 components.
| 3#(1(0(3(0(x1))))) | → | 3#(4(0(0(x1)))) | (206) |
| 3#(1(0(3(0(x1))))) | → | 3#(1(3(4(0(0(x1)))))) | (208) |
| prec(3#) | = | 0 | stat(3#) | = | lex | |
| prec(5) | = | 0 | stat(5) | = | lex | |
| prec(4) | = | 0 | stat(4) | = | lex | |
| prec(3) | = | 0 | stat(3) | = | lex | |
| prec(0) | = | 0 | stat(0) | = | lex | |
| prec(1) | = | 1 | stat(1) | = | lex | |
| prec(2) | = | 0 | stat(2) | = | lex |
| π(3#) | = | 1 |
| π(5) | = | [] |
| π(4) | = | [] |
| π(3) | = | 1 |
| π(0) | = | 1 |
| π(1) | = | [] |
| π(2) | = | 1 |
| 4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
| 1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
| 1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
| 1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
| 1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
| 1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
| 1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
| 1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
| 1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
| 1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
| 5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
| 5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
| 5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
| 4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
| 4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
| 4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
| 3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
| 3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
| 3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
| 3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
| 3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
| 3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
| 3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
| 3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
| 3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
| 3#(1(0(3(0(x1))))) | → | 3#(4(0(0(x1)))) | (206) |
| [4(x1)] | = | -∞ · x1 + 0 |
| [3#(x1)] | = | 0 · x1 + 0 |
| [1(x1)] | = | 0 · x1 + 0 |
| [3(x1)] | = | -∞ · x1 + 0 |
| [5(x1)] | = | -∞ · x1 + 0 |
| [2(x1)] | = | 1 · x1 + 0 |
| [0(x1)] | = | -∞ · x1 + 4 |
| 1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
| 1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
| 1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
| 1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
| 1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
| 1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
| 1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
| 1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
| 1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
| 5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
| 5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
| 5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
| 3(2(1(0(x1)))) | → | 3(1(0(2(0(x1))))) | (51) |
| 3(2(1(0(x1)))) | → | 1(3(3(2(0(x1))))) | (52) |
| 3(0(1(2(x1)))) | → | 1(3(2(2(0(4(x1)))))) | (65) |
| 3(0(2(1(0(x1))))) | → | 3(1(4(0(2(0(x1)))))) | (71) |
| 3(2(3(1(0(x1))))) | → | 1(3(3(2(0(0(x1)))))) | (74) |
| 3(1(0(3(0(x1))))) | → | 3(1(3(4(0(0(x1)))))) | (79) |
| 3(2(5(4(0(x1))))) | → | 5(4(3(2(2(0(x1)))))) | (82) |
| 3(0(0(5(0(x1))))) | → | 5(0(3(0(2(0(x1)))))) | (83) |
| 3(0(0(5(2(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (88) |
| 3#(1(0(3(0(x1))))) | → | 3#(1(3(4(0(0(x1)))))) | (208) |
There are no pairs anymore.
| 4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
| 4#(0(0(1(2(x1))))) | → | 1#(x1) | (236) |
| 1#(4(0(3(5(x1))))) | → | 4#(x1) | (266) |
| 4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
| 4#(0(1(2(x1)))) | → | 1#(x1) | (155) |
| 1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
| prec(4#) | = | 0 | stat(4#) | = | lex | |
| prec(1#) | = | 0 | stat(1#) | = | lex | |
| prec(5) | = | 0 | stat(5) | = | lex | |
| prec(4) | = | 0 | stat(4) | = | lex | |
| prec(3) | = | 0 | stat(3) | = | lex | |
| prec(0) | = | 0 | stat(0) | = | lex | |
| prec(1) | = | 0 | stat(1) | = | lex | |
| prec(2) | = | 0 | stat(2) | = | lex |
| π(4#) | = | 1 |
| π(1#) | = | 1 |
| π(5) | = | 1 |
| π(4) | = | 1 |
| π(3) | = | 1 |
| π(0) | = | 1 |
| π(1) | = | [1] |
| π(2) | = | 1 |
| 1(0(5(0(x1)))) | → | 1(5(2(0(2(0(x1)))))) | (60) |
| 1(2(5(0(x1)))) | → | 1(5(2(2(0(x1))))) | (62) |
| 1(0(1(2(0(x1))))) | → | 1(1(0(2(0(0(x1)))))) | (76) |
| 1(4(0(3(0(x1))))) | → | 3(4(4(1(0(0(x1)))))) | (80) |
| 1(5(2(5(0(x1))))) | → | 1(5(5(0(2(0(x1)))))) | (86) |
| 1(0(3(5(2(x1))))) | → | 1(3(2(2(0(5(x1)))))) | (89) |
| 1(0(1(2(5(x1))))) | → | 1(5(1(3(2(0(x1)))))) | (92) |
| 1(0(3(2(5(x1))))) | → | 3(2(2(0(5(1(x1)))))) | (93) |
| 1(4(0(3(5(x1))))) | → | 1(3(2(0(5(4(x1)))))) | (94) |
| 5(0(5(0(x1)))) | → | 5(5(0(2(0(x1))))) | (61) |
| 5(2(5(0(x1)))) | → | 5(5(2(2(0(x1))))) | (63) |
| 5(0(3(2(0(x1))))) | → | 3(5(0(0(2(0(x1)))))) | (78) |
| 4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
| 4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
| 4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
| 4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
| 4#(0(0(1(2(x1))))) | → | 1#(x1) | (236) |
| 4#(0(1(2(x1)))) | → | 1#(x1) | (155) |
The dependency pairs are split into 2 components.
| 1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 1#(0(3(2(5(x1))))) | → | 1#(x1) | (261) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| 4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
| 4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
| prec(4#) | = | 0 | stat(4#) | = | lex | |
| prec(5) | = | 0 | stat(5) | = | lex | |
| prec(4) | = | 0 | stat(4) | = | lex | |
| prec(3) | = | 0 | stat(3) | = | lex | |
| prec(0) | = | 0 | stat(0) | = | lex | |
| prec(1) | = | 1 | stat(1) | = | lex | |
| prec(2) | = | 0 | stat(2) | = | lex |
| π(4#) | = | 1 |
| π(5) | = | [] |
| π(4) | = | [] |
| π(3) | = | 1 |
| π(0) | = | 1 |
| π(1) | = | [] |
| π(2) | = | 1 |
| 4(0(1(2(x1)))) | → | 2(2(2(0(4(1(x1)))))) | (66) |
| 4(0(1(0(0(x1))))) | → | 4(1(0(2(0(0(x1)))))) | (68) |
| 4(0(2(3(0(x1))))) | → | 4(3(2(0(0(4(x1)))))) | (81) |
| 4(0(0(1(2(x1))))) | → | 2(0(0(4(4(1(x1)))))) | (87) |
| 4#(0(0(1(2(x1))))) | → | 4#(4(1(x1))) | (238) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 4#(0(2(3(0(x1))))) | → | 4#(x1) | (213) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.