Certification Problem
Input (TPDB SRS_Standard/ICFP_2010/213281)
The rewrite relation of the following TRS is considered.
0(1(0(2(x1)))) |
→ |
0(0(3(1(2(x1))))) |
(1) |
0(1(3(4(x1)))) |
→ |
0(4(1(0(3(x1))))) |
(2) |
0(1(3(4(x1)))) |
→ |
0(4(1(1(3(x1))))) |
(3) |
0(1(3(4(x1)))) |
→ |
0(4(1(3(1(x1))))) |
(4) |
0(2(1(4(x1)))) |
→ |
0(4(1(2(3(x1))))) |
(5) |
0(2(1(4(x1)))) |
→ |
0(4(1(3(2(x1))))) |
(6) |
0(2(1(4(x1)))) |
→ |
2(0(4(1(4(x1))))) |
(7) |
0(2(1(4(x1)))) |
→ |
5(5(0(4(1(2(x1)))))) |
(8) |
0(2(1(5(x1)))) |
→ |
5(0(4(1(2(x1))))) |
(9) |
0(2(2(4(x1)))) |
→ |
0(4(2(2(5(x1))))) |
(10) |
0(2(2(4(x1)))) |
→ |
0(4(2(5(2(x1))))) |
(11) |
3(4(0(2(x1)))) |
→ |
3(0(4(5(2(x1))))) |
(12) |
3(4(0(2(x1)))) |
→ |
3(5(0(4(2(x1))))) |
(13) |
0(0(1(4(5(x1))))) |
→ |
0(4(1(0(3(5(x1)))))) |
(14) |
0(1(0(2(4(x1))))) |
→ |
2(0(0(4(1(1(x1)))))) |
(15) |
0(1(2(3(4(x1))))) |
→ |
2(0(4(1(0(3(x1)))))) |
(16) |
0(1(3(3(4(x1))))) |
→ |
0(0(3(1(3(4(x1)))))) |
(17) |
0(1(4(0(2(x1))))) |
→ |
0(4(1(5(0(2(x1)))))) |
(18) |
0(1(4(1(5(x1))))) |
→ |
2(5(0(4(1(1(x1)))))) |
(19) |
0(1(4(3(4(x1))))) |
→ |
0(4(0(3(1(4(x1)))))) |
(20) |
0(1(4(3(4(x1))))) |
→ |
3(0(4(1(5(4(x1)))))) |
(21) |
0(1(4(3(5(x1))))) |
→ |
5(4(5(0(3(1(x1)))))) |
(22) |
0(1(5(0(2(x1))))) |
→ |
0(0(4(1(2(5(x1)))))) |
(23) |
0(1(5(1(4(x1))))) |
→ |
4(5(0(3(1(1(x1)))))) |
(24) |
0(2(1(4(4(x1))))) |
→ |
0(4(1(2(4(3(x1)))))) |
(25) |
0(2(1(4(5(x1))))) |
→ |
0(4(1(2(5(2(x1)))))) |
(26) |
0(2(1(5(4(x1))))) |
→ |
5(0(2(0(4(1(x1)))))) |
(27) |
0(2(4(1(5(x1))))) |
→ |
5(0(4(1(5(2(x1)))))) |
(28) |
0(2(4(3(5(x1))))) |
→ |
0(4(5(2(5(3(x1)))))) |
(29) |
0(2(5(1(4(x1))))) |
→ |
0(0(5(4(1(2(x1)))))) |
(30) |
3(0(1(3(2(x1))))) |
→ |
0(3(1(0(3(2(x1)))))) |
(31) |
3(0(2(1(4(x1))))) |
→ |
4(0(4(1(3(2(x1)))))) |
(32) |
3(0(2(1(5(x1))))) |
→ |
5(3(2(0(4(1(x1)))))) |
(33) |
3(0(4(0(2(x1))))) |
→ |
0(3(4(0(4(2(x1)))))) |
(34) |
3(0(4(0(2(x1))))) |
→ |
0(4(1(2(0(3(x1)))))) |
(35) |
3(0(5(1(4(x1))))) |
→ |
3(0(4(1(1(5(x1)))))) |
(36) |
3(0(5(1(5(x1))))) |
→ |
0(4(1(3(5(5(x1)))))) |
(37) |
3(2(4(1(2(x1))))) |
→ |
3(1(2(2(5(4(x1)))))) |
(38) |
3(2(4(1(5(x1))))) |
→ |
3(1(4(5(2(5(x1)))))) |
(39) |
3(4(0(1(2(x1))))) |
→ |
0(4(2(0(3(1(x1)))))) |
(40) |
3(4(0(1(4(x1))))) |
→ |
0(4(1(5(3(4(x1)))))) |
(41) |
3(4(0(1(5(x1))))) |
→ |
0(4(1(5(5(3(x1)))))) |
(42) |
3(4(0(2(4(x1))))) |
→ |
0(3(4(0(4(2(x1)))))) |
(43) |
3(4(1(2(4(x1))))) |
→ |
0(4(1(2(4(3(x1)))))) |
(44) |
3(4(1(3(5(x1))))) |
→ |
4(3(0(3(1(5(x1)))))) |
(45) |
3(4(3(0(2(x1))))) |
→ |
3(3(0(4(1(2(x1)))))) |
(46) |
3(4(5(0(2(x1))))) |
→ |
0(3(0(4(2(5(x1)))))) |
(47) |
3(5(0(2(2(x1))))) |
→ |
0(3(2(5(2(5(x1)))))) |
(48) |
3(5(2(1(4(x1))))) |
→ |
3(5(1(0(4(2(x1)))))) |
(49) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by ttt2 @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
0#(1(0(2(x1)))) |
→ |
3#(1(2(x1))) |
(50) |
0#(1(0(2(x1)))) |
→ |
0#(3(1(2(x1)))) |
(51) |
0#(1(0(2(x1)))) |
→ |
0#(0(3(1(2(x1))))) |
(52) |
0#(1(3(4(x1)))) |
→ |
3#(x1) |
(53) |
0#(1(3(4(x1)))) |
→ |
0#(3(x1)) |
(54) |
0#(1(3(4(x1)))) |
→ |
0#(4(1(0(3(x1))))) |
(55) |
0#(1(3(4(x1)))) |
→ |
0#(4(1(1(3(x1))))) |
(56) |
0#(1(3(4(x1)))) |
→ |
3#(1(x1)) |
(57) |
0#(1(3(4(x1)))) |
→ |
0#(4(1(3(1(x1))))) |
(58) |
0#(2(1(4(x1)))) |
→ |
3#(x1) |
(59) |
0#(2(1(4(x1)))) |
→ |
0#(4(1(2(3(x1))))) |
(60) |
0#(2(1(4(x1)))) |
→ |
3#(2(x1)) |
(61) |
0#(2(1(4(x1)))) |
→ |
0#(4(1(3(2(x1))))) |
(62) |
0#(2(1(4(x1)))) |
→ |
0#(4(1(4(x1)))) |
(63) |
0#(2(1(4(x1)))) |
→ |
0#(4(1(2(x1)))) |
(64) |
0#(2(1(5(x1)))) |
→ |
0#(4(1(2(x1)))) |
(65) |
0#(2(2(4(x1)))) |
→ |
0#(4(2(2(5(x1))))) |
(66) |
0#(2(2(4(x1)))) |
→ |
0#(4(2(5(2(x1))))) |
(67) |
3#(4(0(2(x1)))) |
→ |
0#(4(5(2(x1)))) |
(68) |
3#(4(0(2(x1)))) |
→ |
3#(0(4(5(2(x1))))) |
(69) |
3#(4(0(2(x1)))) |
→ |
0#(4(2(x1))) |
(70) |
3#(4(0(2(x1)))) |
→ |
3#(5(0(4(2(x1))))) |
(71) |
0#(0(1(4(5(x1))))) |
→ |
3#(5(x1)) |
(72) |
0#(0(1(4(5(x1))))) |
→ |
0#(3(5(x1))) |
(73) |
0#(0(1(4(5(x1))))) |
→ |
0#(4(1(0(3(5(x1)))))) |
(74) |
0#(1(0(2(4(x1))))) |
→ |
0#(4(1(1(x1)))) |
(75) |
0#(1(0(2(4(x1))))) |
→ |
0#(0(4(1(1(x1))))) |
(76) |
0#(1(2(3(4(x1))))) |
→ |
3#(x1) |
(77) |
0#(1(2(3(4(x1))))) |
→ |
0#(3(x1)) |
(78) |
0#(1(2(3(4(x1))))) |
→ |
0#(4(1(0(3(x1))))) |
(79) |
0#(1(3(3(4(x1))))) |
→ |
3#(1(3(4(x1)))) |
(80) |
0#(1(3(3(4(x1))))) |
→ |
0#(3(1(3(4(x1))))) |
(81) |
0#(1(3(3(4(x1))))) |
→ |
0#(0(3(1(3(4(x1)))))) |
(82) |
0#(1(4(0(2(x1))))) |
→ |
0#(4(1(5(0(2(x1)))))) |
(83) |
0#(1(4(1(5(x1))))) |
→ |
0#(4(1(1(x1)))) |
(84) |
0#(1(4(3(4(x1))))) |
→ |
3#(1(4(x1))) |
(85) |
0#(1(4(3(4(x1))))) |
→ |
0#(3(1(4(x1)))) |
(86) |
0#(1(4(3(4(x1))))) |
→ |
0#(4(0(3(1(4(x1)))))) |
(87) |
0#(1(4(3(4(x1))))) |
→ |
0#(4(1(5(4(x1))))) |
(88) |
0#(1(4(3(4(x1))))) |
→ |
3#(0(4(1(5(4(x1)))))) |
(89) |
0#(1(4(3(5(x1))))) |
→ |
3#(1(x1)) |
(90) |
0#(1(4(3(5(x1))))) |
→ |
0#(3(1(x1))) |
(91) |
0#(1(5(0(2(x1))))) |
→ |
0#(4(1(2(5(x1))))) |
(92) |
0#(1(5(0(2(x1))))) |
→ |
0#(0(4(1(2(5(x1)))))) |
(93) |
0#(1(5(1(4(x1))))) |
→ |
3#(1(1(x1))) |
(94) |
0#(1(5(1(4(x1))))) |
→ |
0#(3(1(1(x1)))) |
(95) |
0#(2(1(4(4(x1))))) |
→ |
3#(x1) |
(96) |
0#(2(1(4(4(x1))))) |
→ |
0#(4(1(2(4(3(x1)))))) |
(97) |
0#(2(1(4(5(x1))))) |
→ |
0#(4(1(2(5(2(x1)))))) |
(98) |
0#(2(1(5(4(x1))))) |
→ |
0#(4(1(x1))) |
(99) |
0#(2(1(5(4(x1))))) |
→ |
0#(2(0(4(1(x1))))) |
(100) |
0#(2(4(1(5(x1))))) |
→ |
0#(4(1(5(2(x1))))) |
(101) |
0#(2(4(3(5(x1))))) |
→ |
3#(x1) |
(102) |
0#(2(4(3(5(x1))))) |
→ |
0#(4(5(2(5(3(x1)))))) |
(103) |
0#(2(5(1(4(x1))))) |
→ |
0#(5(4(1(2(x1))))) |
(104) |
0#(2(5(1(4(x1))))) |
→ |
0#(0(5(4(1(2(x1)))))) |
(105) |
3#(0(1(3(2(x1))))) |
→ |
0#(3(2(x1))) |
(106) |
3#(0(1(3(2(x1))))) |
→ |
3#(1(0(3(2(x1))))) |
(107) |
3#(0(1(3(2(x1))))) |
→ |
0#(3(1(0(3(2(x1)))))) |
(108) |
3#(0(2(1(4(x1))))) |
→ |
3#(2(x1)) |
(109) |
3#(0(2(1(4(x1))))) |
→ |
0#(4(1(3(2(x1))))) |
(110) |
3#(0(2(1(5(x1))))) |
→ |
0#(4(1(x1))) |
(111) |
3#(0(2(1(5(x1))))) |
→ |
3#(2(0(4(1(x1))))) |
(112) |
3#(0(4(0(2(x1))))) |
→ |
0#(4(2(x1))) |
(113) |
3#(0(4(0(2(x1))))) |
→ |
3#(4(0(4(2(x1))))) |
(114) |
3#(0(4(0(2(x1))))) |
→ |
0#(3(4(0(4(2(x1)))))) |
(115) |
3#(0(4(0(2(x1))))) |
→ |
3#(x1) |
(116) |
3#(0(4(0(2(x1))))) |
→ |
0#(3(x1)) |
(117) |
3#(0(4(0(2(x1))))) |
→ |
0#(4(1(2(0(3(x1)))))) |
(118) |
3#(0(5(1(4(x1))))) |
→ |
0#(4(1(1(5(x1))))) |
(119) |
3#(0(5(1(4(x1))))) |
→ |
3#(0(4(1(1(5(x1)))))) |
(120) |
3#(0(5(1(5(x1))))) |
→ |
3#(5(5(x1))) |
(121) |
3#(0(5(1(5(x1))))) |
→ |
0#(4(1(3(5(5(x1)))))) |
(122) |
3#(2(4(1(2(x1))))) |
→ |
3#(1(2(2(5(4(x1)))))) |
(123) |
3#(2(4(1(5(x1))))) |
→ |
3#(1(4(5(2(5(x1)))))) |
(124) |
3#(4(0(1(2(x1))))) |
→ |
3#(1(x1)) |
(125) |
3#(4(0(1(2(x1))))) |
→ |
0#(3(1(x1))) |
(126) |
3#(4(0(1(2(x1))))) |
→ |
0#(4(2(0(3(1(x1)))))) |
(127) |
3#(4(0(1(4(x1))))) |
→ |
3#(4(x1)) |
(128) |
3#(4(0(1(4(x1))))) |
→ |
0#(4(1(5(3(4(x1)))))) |
(129) |
3#(4(0(1(5(x1))))) |
→ |
3#(x1) |
(130) |
3#(4(0(1(5(x1))))) |
→ |
0#(4(1(5(5(3(x1)))))) |
(131) |
3#(4(0(2(4(x1))))) |
→ |
0#(4(2(x1))) |
(132) |
3#(4(0(2(4(x1))))) |
→ |
3#(4(0(4(2(x1))))) |
(133) |
3#(4(0(2(4(x1))))) |
→ |
0#(3(4(0(4(2(x1)))))) |
(134) |
3#(4(1(2(4(x1))))) |
→ |
3#(x1) |
(135) |
3#(4(1(2(4(x1))))) |
→ |
0#(4(1(2(4(3(x1)))))) |
(136) |
3#(4(1(3(5(x1))))) |
→ |
3#(1(5(x1))) |
(137) |
3#(4(1(3(5(x1))))) |
→ |
0#(3(1(5(x1)))) |
(138) |
3#(4(1(3(5(x1))))) |
→ |
3#(0(3(1(5(x1))))) |
(139) |
3#(4(3(0(2(x1))))) |
→ |
0#(4(1(2(x1)))) |
(140) |
3#(4(3(0(2(x1))))) |
→ |
3#(0(4(1(2(x1))))) |
(141) |
3#(4(3(0(2(x1))))) |
→ |
3#(3(0(4(1(2(x1)))))) |
(142) |
3#(4(5(0(2(x1))))) |
→ |
0#(4(2(5(x1)))) |
(143) |
3#(4(5(0(2(x1))))) |
→ |
3#(0(4(2(5(x1))))) |
(144) |
3#(4(5(0(2(x1))))) |
→ |
0#(3(0(4(2(5(x1)))))) |
(145) |
3#(5(0(2(2(x1))))) |
→ |
3#(2(5(2(5(x1))))) |
(146) |
3#(5(0(2(2(x1))))) |
→ |
0#(3(2(5(2(5(x1)))))) |
(147) |
3#(5(2(1(4(x1))))) |
→ |
0#(4(2(x1))) |
(148) |
3#(5(2(1(4(x1))))) |
→ |
3#(5(1(0(4(2(x1)))))) |
(149) |
1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
1st
component contains the
pair
3#(4(1(2(4(x1))))) |
→ |
3#(x1) |
(135) |
3#(4(0(1(5(x1))))) |
→ |
3#(x1) |
(130) |
3#(4(0(1(4(x1))))) |
→ |
3#(4(x1)) |
(128) |
3#(0(4(0(2(x1))))) |
→ |
0#(3(x1)) |
(117) |
0#(2(4(3(5(x1))))) |
→ |
3#(x1) |
(102) |
3#(0(4(0(2(x1))))) |
→ |
3#(x1) |
(116) |
3#(0(1(3(2(x1))))) |
→ |
0#(3(2(x1))) |
(106) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the
prec(3#) |
= |
2 |
|
stat(3#) |
= |
lex
|
prec(0#) |
= |
0 |
|
stat(0#) |
= |
lex
|
prec(5) |
= |
0 |
|
stat(5) |
= |
lex
|
prec(4) |
= |
0 |
|
stat(4) |
= |
lex
|
prec(3) |
= |
1 |
|
stat(3) |
= |
lex
|
prec(1) |
= |
6 |
|
stat(1) |
= |
lex
|
prec(0) |
= |
0 |
|
stat(0) |
= |
lex
|
prec(2) |
= |
3 |
|
stat(2) |
= |
lex
|
π(3#) |
= |
[] |
π(0#) |
= |
1 |
π(5) |
= |
1 |
π(4) |
= |
[] |
π(3) |
= |
[] |
π(1) |
= |
[] |
π(0) |
= |
1 |
π(2) |
= |
[] |
together with the usable
rules
0(1(0(2(x1)))) |
→ |
0(0(3(1(2(x1))))) |
(1) |
0(1(3(4(x1)))) |
→ |
0(4(1(0(3(x1))))) |
(2) |
0(1(3(4(x1)))) |
→ |
0(4(1(1(3(x1))))) |
(3) |
0(1(3(4(x1)))) |
→ |
0(4(1(3(1(x1))))) |
(4) |
0(2(1(4(x1)))) |
→ |
0(4(1(2(3(x1))))) |
(5) |
0(2(1(4(x1)))) |
→ |
0(4(1(3(2(x1))))) |
(6) |
0(2(1(4(x1)))) |
→ |
2(0(4(1(4(x1))))) |
(7) |
0(2(1(4(x1)))) |
→ |
5(5(0(4(1(2(x1)))))) |
(8) |
0(2(1(5(x1)))) |
→ |
5(0(4(1(2(x1))))) |
(9) |
0(2(2(4(x1)))) |
→ |
0(4(2(2(5(x1))))) |
(10) |
0(2(2(4(x1)))) |
→ |
0(4(2(5(2(x1))))) |
(11) |
3(4(0(2(x1)))) |
→ |
3(0(4(5(2(x1))))) |
(12) |
3(4(0(2(x1)))) |
→ |
3(5(0(4(2(x1))))) |
(13) |
0(0(1(4(5(x1))))) |
→ |
0(4(1(0(3(5(x1)))))) |
(14) |
0(1(0(2(4(x1))))) |
→ |
2(0(0(4(1(1(x1)))))) |
(15) |
0(1(2(3(4(x1))))) |
→ |
2(0(4(1(0(3(x1)))))) |
(16) |
0(1(3(3(4(x1))))) |
→ |
0(0(3(1(3(4(x1)))))) |
(17) |
0(1(4(0(2(x1))))) |
→ |
0(4(1(5(0(2(x1)))))) |
(18) |
0(1(4(1(5(x1))))) |
→ |
2(5(0(4(1(1(x1)))))) |
(19) |
0(1(4(3(4(x1))))) |
→ |
0(4(0(3(1(4(x1)))))) |
(20) |
0(1(4(3(4(x1))))) |
→ |
3(0(4(1(5(4(x1)))))) |
(21) |
0(1(4(3(5(x1))))) |
→ |
5(4(5(0(3(1(x1)))))) |
(22) |
0(1(5(0(2(x1))))) |
→ |
0(0(4(1(2(5(x1)))))) |
(23) |
0(1(5(1(4(x1))))) |
→ |
4(5(0(3(1(1(x1)))))) |
(24) |
0(2(1(4(4(x1))))) |
→ |
0(4(1(2(4(3(x1)))))) |
(25) |
0(2(1(4(5(x1))))) |
→ |
0(4(1(2(5(2(x1)))))) |
(26) |
0(2(1(5(4(x1))))) |
→ |
5(0(2(0(4(1(x1)))))) |
(27) |
0(2(4(1(5(x1))))) |
→ |
5(0(4(1(5(2(x1)))))) |
(28) |
0(2(4(3(5(x1))))) |
→ |
0(4(5(2(5(3(x1)))))) |
(29) |
0(2(5(1(4(x1))))) |
→ |
0(0(5(4(1(2(x1)))))) |
(30) |
3(0(1(3(2(x1))))) |
→ |
0(3(1(0(3(2(x1)))))) |
(31) |
3(0(2(1(4(x1))))) |
→ |
4(0(4(1(3(2(x1)))))) |
(32) |
3(0(2(1(5(x1))))) |
→ |
5(3(2(0(4(1(x1)))))) |
(33) |
3(0(4(0(2(x1))))) |
→ |
0(3(4(0(4(2(x1)))))) |
(34) |
3(0(4(0(2(x1))))) |
→ |
0(4(1(2(0(3(x1)))))) |
(35) |
3(0(5(1(4(x1))))) |
→ |
3(0(4(1(1(5(x1)))))) |
(36) |
3(0(5(1(5(x1))))) |
→ |
0(4(1(3(5(5(x1)))))) |
(37) |
3(2(4(1(2(x1))))) |
→ |
3(1(2(2(5(4(x1)))))) |
(38) |
3(2(4(1(5(x1))))) |
→ |
3(1(4(5(2(5(x1)))))) |
(39) |
3(4(0(1(2(x1))))) |
→ |
0(4(2(0(3(1(x1)))))) |
(40) |
3(4(0(1(4(x1))))) |
→ |
0(4(1(5(3(4(x1)))))) |
(41) |
3(4(0(1(5(x1))))) |
→ |
0(4(1(5(5(3(x1)))))) |
(42) |
3(4(0(2(4(x1))))) |
→ |
0(3(4(0(4(2(x1)))))) |
(43) |
3(4(1(2(4(x1))))) |
→ |
0(4(1(2(4(3(x1)))))) |
(44) |
3(4(1(3(5(x1))))) |
→ |
4(3(0(3(1(5(x1)))))) |
(45) |
3(4(3(0(2(x1))))) |
→ |
3(3(0(4(1(2(x1)))))) |
(46) |
3(4(5(0(2(x1))))) |
→ |
0(3(0(4(2(5(x1)))))) |
(47) |
3(5(0(2(2(x1))))) |
→ |
0(3(2(5(2(5(x1)))))) |
(48) |
3(5(2(1(4(x1))))) |
→ |
3(5(1(0(4(2(x1)))))) |
(49) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
3#(0(4(0(2(x1))))) |
→ |
0#(3(x1)) |
(117) |
0#(2(4(3(5(x1))))) |
→ |
3#(x1) |
(102) |
3#(0(1(3(2(x1))))) |
→ |
0#(3(2(x1))) |
(106) |
could be deleted.
1.1.1.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
3#(4(1(2(4(x1))))) |
→ |
3#(x1) |
(135) |
|
1 |
> |
1 |
3#(4(0(1(5(x1))))) |
→ |
3#(x1) |
(130) |
|
1 |
> |
1 |
3#(4(0(1(4(x1))))) |
→ |
3#(4(x1)) |
(128) |
|
1 |
> |
1 |
3#(0(4(0(2(x1))))) |
→ |
3#(x1) |
(116) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.