The rewrite relation of the following TRS is considered.
g(h(x1)) | → | g(f(s(x1))) | (1) |
f(s(s(s(x1)))) | → | h(f(s(h(x1)))) | (2) |
f(h(x1)) | → | h(f(s(h(x1)))) | (3) |
h(x1) | → | x1 | (4) |
f(f(s(s(x1)))) | → | s(s(s(f(f(x1))))) | (5) |
b(a(x1)) | → | a(b(x1)) | (6) |
a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
b(b(b(b(x1)))) | → | a(x1) | (8) |
h(g(x1)) | → | s(f(g(x1))) | (9) |
s(s(s(f(x1)))) | → | h(s(f(h(x1)))) | (10) |
h(f(x1)) | → | h(s(f(h(x1)))) | (11) |
h(x1) | → | x1 | (4) |
s(s(f(f(x1)))) | → | f(f(s(s(s(x1))))) | (12) |
a(b(x1)) | → | b(a(x1)) | (13) |
a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
b(b(b(b(x1)))) | → | a(x1) | (8) |
[a(x1)] | = | 8 · x1 + -∞ |
[g(x1)] | = | 0 · x1 + -∞ |
[f(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 2 · x1 + -∞ |
[h(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
[a(x1)] | = | 0 · x1 + -∞ |
[g(x1)] | = | 5 · x1 + -∞ |
[f(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 6 · x1 + -∞ |
[h(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
b(b(b(b(x1)))) | → | a(x1) | (8) |
[a(x1)] | = |
|
||||||||||||||||||||||||
[g(x1)] | = |
|
||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||
[h(x1)] | = |
|
||||||||||||||||||||||||
[s(x1)] | = |
|
a(b(x1)) | → | b(a(x1)) | (13) |
h#(g(x1)) | → | s#(f(g(x1))) | (14) |
s#(s(s(f(x1)))) | → | h#(x1) | (15) |
s#(s(s(f(x1)))) | → | s#(f(h(x1))) | (16) |
s#(s(s(f(x1)))) | → | h#(s(f(h(x1)))) | (17) |
h#(f(x1)) | → | h#(x1) | (18) |
h#(f(x1)) | → | s#(f(h(x1))) | (19) |
h#(f(x1)) | → | h#(s(f(h(x1)))) | (20) |
s#(s(f(f(x1)))) | → | s#(x1) | (21) |
s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
The dependency pairs are split into 2 components.
s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
s#(s(f(f(x1)))) | → | s#(x1) | (21) |
[g(x1)] | = |
|
||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||
[h(x1)] | = |
|
||||||||||||||||||||||||
[s#(x1)] | = |
|
||||||||||||||||||||||||
[s(x1)] | = |
|
h(g(x1)) | → | s(f(g(x1))) | (9) |
s(s(s(f(x1)))) | → | h(s(f(h(x1)))) | (10) |
h(f(x1)) | → | h(s(f(h(x1)))) | (11) |
h(x1) | → | x1 | (4) |
s(s(f(f(x1)))) | → | f(f(s(s(s(x1))))) | (12) |
s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
s#(s(f(f(x1)))) | → | s#(x1) | (21) |
There are no pairs anymore.
h#(f(x1)) | → | h#(x1) | (18) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
h#(f(x1)) | → | h#(x1) | (18) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.