The rewrite relation of the following TRS is considered.
| g(h(x1)) | → | g(f(s(x1))) | (1) |
| f(s(s(s(x1)))) | → | h(f(s(h(x1)))) | (2) |
| f(h(x1)) | → | h(f(s(h(x1)))) | (3) |
| h(x1) | → | x1 | (4) |
| f(f(s(s(x1)))) | → | s(s(s(f(f(x1))))) | (5) |
| b(a(x1)) | → | a(b(x1)) | (6) |
| a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
| b(b(b(b(x1)))) | → | a(x1) | (8) |
| h(g(x1)) | → | s(f(g(x1))) | (9) |
| s(s(s(f(x1)))) | → | h(s(f(h(x1)))) | (10) |
| h(f(x1)) | → | h(s(f(h(x1)))) | (11) |
| h(x1) | → | x1 | (4) |
| s(s(f(f(x1)))) | → | f(f(s(s(s(x1))))) | (12) |
| a(b(x1)) | → | b(a(x1)) | (13) |
| a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
| b(b(b(b(x1)))) | → | a(x1) | (8) |
| [a(x1)] | = | 8 · x1 + -∞ |
| [g(x1)] | = | 0 · x1 + -∞ |
| [f(x1)] | = | 0 · x1 + -∞ |
| [b(x1)] | = | 2 · x1 + -∞ |
| [h(x1)] | = | 0 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| a(a(a(x1))) | → | b(a(a(b(x1)))) | (7) |
| [a(x1)] | = | 0 · x1 + -∞ |
| [g(x1)] | = | 5 · x1 + -∞ |
| [f(x1)] | = | 0 · x1 + -∞ |
| [b(x1)] | = | 6 · x1 + -∞ |
| [h(x1)] | = | 0 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| b(b(b(b(x1)))) | → | a(x1) | (8) |
| [a(x1)] | = |
|
||||||||||||||||||||||||
| [g(x1)] | = |
|
||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||
| [h(x1)] | = |
|
||||||||||||||||||||||||
| [s(x1)] | = |
|
| a(b(x1)) | → | b(a(x1)) | (13) |
| h#(g(x1)) | → | s#(f(g(x1))) | (14) |
| s#(s(s(f(x1)))) | → | h#(x1) | (15) |
| s#(s(s(f(x1)))) | → | s#(f(h(x1))) | (16) |
| s#(s(s(f(x1)))) | → | h#(s(f(h(x1)))) | (17) |
| h#(f(x1)) | → | h#(x1) | (18) |
| h#(f(x1)) | → | s#(f(h(x1))) | (19) |
| h#(f(x1)) | → | h#(s(f(h(x1)))) | (20) |
| s#(s(f(f(x1)))) | → | s#(x1) | (21) |
| s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
| s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
The dependency pairs are split into 2 components.
| s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
| s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
| s#(s(f(f(x1)))) | → | s#(x1) | (21) |
| [g(x1)] | = |
|
||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||
| [h(x1)] | = |
|
||||||||||||||||||||||||
| [s#(x1)] | = |
|
||||||||||||||||||||||||
| [s(x1)] | = |
|
| h(g(x1)) | → | s(f(g(x1))) | (9) |
| s(s(s(f(x1)))) | → | h(s(f(h(x1)))) | (10) |
| h(f(x1)) | → | h(s(f(h(x1)))) | (11) |
| h(x1) | → | x1 | (4) |
| s(s(f(f(x1)))) | → | f(f(s(s(s(x1))))) | (12) |
| s#(s(f(f(x1)))) | → | s#(s(s(x1))) | (23) |
| s#(s(f(f(x1)))) | → | s#(s(x1)) | (22) |
| s#(s(f(f(x1)))) | → | s#(x1) | (21) |
There are no pairs anymore.
| h#(f(x1)) | → | h#(x1) | (18) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| h#(f(x1)) | → | h#(x1) | (18) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.