The rewrite relation of the following TRS is considered.
| a(b(x1)) | → | b(c(a(x1))) | (1) |
| b(c(x1)) | → | c(b(b(x1))) | (2) |
| a(c(x1)) | → | c(a(b(x1))) | (3) |
| a(a(x1)) | → | a(d(d(d(x1)))) | (4) |
| d(a(x1)) | → | d(d(c(x1))) | (5) |
| a(d(d(c(x1)))) | → | a(a(a(d(x1)))) | (6) |
| e(e(f(f(x1)))) | → | f(f(f(e(e(x1))))) | (7) |
| e(x1) | → | a(x1) | (8) |
| b(d(x1)) | → | d(d(x1)) | (9) |
| b(a(x1)) | → | a(c(b(x1))) | (10) |
| c(b(x1)) | → | b(b(c(x1))) | (11) |
| c(a(x1)) | → | b(a(c(x1))) | (12) |
| a(a(x1)) | → | d(d(d(a(x1)))) | (13) |
| a(d(x1)) | → | c(d(d(x1))) | (14) |
| c(d(d(a(x1)))) | → | d(a(a(a(x1)))) | (15) |
| f(f(e(e(x1)))) | → | e(e(f(f(f(x1))))) | (16) |
| e(x1) | → | a(x1) | (8) |
| d(b(x1)) | → | d(d(x1)) | (17) |
| [f(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [d(x1)] | = | 0 · x1 + -∞ |
| [e(x1)] | = | 8 · x1 + -∞ |
| [b(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 0 · x1 + -∞ |
| e(x1) | → | a(x1) | (8) |
| [f(x1)] | = |
|
||||||||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||||||||
| [d(x1)] | = |
|
||||||||||||||||||||||||
| [e(x1)] | = |
|
||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||
| [c(x1)] | = |
|
| d(b(x1)) | → | d(d(x1)) | (17) |
| b#(a(x1)) | → | b#(x1) | (18) |
| b#(a(x1)) | → | c#(b(x1)) | (19) |
| b#(a(x1)) | → | a#(c(b(x1))) | (20) |
| c#(b(x1)) | → | c#(x1) | (21) |
| c#(b(x1)) | → | b#(c(x1)) | (22) |
| c#(b(x1)) | → | b#(b(c(x1))) | (23) |
| c#(a(x1)) | → | c#(x1) | (24) |
| c#(a(x1)) | → | a#(c(x1)) | (25) |
| c#(a(x1)) | → | b#(a(c(x1))) | (26) |
| a#(d(x1)) | → | c#(d(d(x1))) | (27) |
| c#(d(d(a(x1)))) | → | a#(a(x1)) | (28) |
| c#(d(d(a(x1)))) | → | a#(a(a(x1))) | (29) |
| f#(f(e(e(x1)))) | → | f#(x1) | (30) |
| f#(f(e(e(x1)))) | → | f#(f(x1)) | (31) |
| f#(f(e(e(x1)))) | → | f#(f(f(x1))) | (32) |
The dependency pairs are split into 3 components.
| c#(a(x1)) | → | c#(x1) | (24) |
| c#(a(x1)) | → | b#(a(c(x1))) | (26) |
| b#(a(x1)) | → | c#(b(x1)) | (19) |
| c#(b(x1)) | → | b#(b(c(x1))) | (23) |
| b#(a(x1)) | → | b#(x1) | (18) |
| c#(b(x1)) | → | b#(c(x1)) | (22) |
| c#(b(x1)) | → | c#(x1) | (21) |
| prec(c#) | = | 0 | stat(c#) | = | lex | |
| prec(b#) | = | 0 | stat(b#) | = | lex | |
| prec(d) | = | 0 | stat(d) | = | lex | |
| prec(c) | = | 0 | stat(c) | = | lex | |
| prec(a) | = | 1 | stat(a) | = | lex | |
| prec(b) | = | 0 | stat(b) | = | lex |
| π(c#) | = | 1 |
| π(b#) | = | 1 |
| π(d) | = | [] |
| π(c) | = | 1 |
| π(a) | = | [1] |
| π(b) | = | 1 |
| c(b(x1)) | → | b(b(c(x1))) | (11) |
| c(a(x1)) | → | b(a(c(x1))) | (12) |
| c(d(d(a(x1)))) | → | d(a(a(a(x1)))) | (15) |
| b(a(x1)) | → | a(c(b(x1))) | (10) |
| a(a(x1)) | → | d(d(d(a(x1)))) | (13) |
| a(d(x1)) | → | c(d(d(x1))) | (14) |
| c#(a(x1)) | → | c#(x1) | (24) |
| b#(a(x1)) | → | c#(b(x1)) | (19) |
| b#(a(x1)) | → | b#(x1) | (18) |
The dependency pairs are split into 1 component.
| c#(b(x1)) | → | c#(x1) | (21) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| c#(b(x1)) | → | c#(x1) | (21) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| a#(d(x1)) | → | c#(d(d(x1))) | (27) |
| c#(d(d(a(x1)))) | → | a#(a(a(x1))) | (29) |
| c#(d(d(a(x1)))) | → | a#(a(x1)) | (28) |
| [a#(x1)] | = |
|
||||||||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||||||||
| [d(x1)] | = |
|
||||||||||||||||||||||||
| [c#(x1)] | = |
|
||||||||||||||||||||||||
| [c(x1)] | = |
|
| a(a(x1)) | → | d(d(d(a(x1)))) | (13) |
| a(d(x1)) | → | c(d(d(x1))) | (14) |
| c(d(d(a(x1)))) | → | d(a(a(a(x1)))) | (15) |
| c#(d(d(a(x1)))) | → | a#(a(a(x1))) | (29) |
| c#(d(d(a(x1)))) | → | a#(a(x1)) | (28) |
The dependency pairs are split into 0 components.
| f#(f(e(e(x1)))) | → | f#(f(f(x1))) | (32) |
| f#(f(e(e(x1)))) | → | f#(f(x1)) | (31) |
| f#(f(e(e(x1)))) | → | f#(x1) | (30) |
| π(f#) | = | { 1 } |
| π(e) | = | { 1, 1 } |
| π(f) | = | { 1 } |
| f#(f(e(e(x1)))) | → | f#(f(f(x1))) | (32) |
| f#(f(e(e(x1)))) | → | f#(f(x1)) | (31) |
| f#(f(e(e(x1)))) | → | f#(x1) | (30) |
There are no pairs anymore.