The rewrite relation of the following TRS is considered.
| v(s(x1)) | → | s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))))) | (1) |
| v(0(x1)) | → | p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) | (2) |
| w(s(x1)) | → | s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))))))))) | (3) |
| w(0(x1)) | → | p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(s(s(s(p(s(x1)))))))))) | (7) |
| [0(x1)] | = | 0 · x1 + -∞ |
| [v(x1)] | = | 1 · x1 + -∞ |
| [w(x1)] | = | 1 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| v(0(x1)) | → | p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) | (2) |
| w(0(x1)) | → | p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) | (4) |
| v#(s(x1)) | → | p#(s(x1)) | (8) |
| v#(s(x1)) | → | p#(s(p(s(x1)))) | (9) |
| v#(s(x1)) | → | p#(s(s(p(s(p(s(x1))))))) | (10) |
| v#(s(x1)) | → | p#(p(s(s(p(s(p(s(x1)))))))) | (11) |
| v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (12) |
| v#(s(x1)) | → | p#(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))) | (13) |
| v#(s(x1)) | → | p#(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1))))))))))))))))))) | (14) |
| w#(s(x1)) | → | p#(s(s(x1))) | (15) |
| w#(s(x1)) | → | p#(p(s(s(x1)))) | (16) |
| w#(s(x1)) | → | p#(s(s(s(p(p(s(s(x1)))))))) | (17) |
| w#(s(x1)) | → | p#(p(s(s(s(p(p(s(s(x1))))))))) | (18) |
| w#(s(x1)) | → | v#(p(p(s(s(s(p(p(s(s(x1)))))))))) | (19) |
| w#(s(x1)) | → | p#(s(s(v(p(p(s(s(s(p(p(s(s(x1))))))))))))) | (20) |
| w#(s(x1)) | → | p#(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))) | (21) |
| p#(p(s(x1))) | → | p#(x1) | (22) |
| p#(0(x1)) | → | p#(s(x1)) | (23) |
The dependency pairs are split into 2 components.
| w#(s(x1)) | → | v#(p(p(s(s(s(p(p(s(s(x1)))))))))) | (19) |
| v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (12) |
| [0(x1)] | = | -∞ · x1 + 0 |
| [v#(x1)] | = | 0 · x1 + 0 |
| [s(x1)] | = | 1 · x1 + 1 |
| [w#(x1)] | = | 0 · x1 + 0 |
| [p(x1)] | = | -1 · x1 + 0 |
| p(s(x1)) | → | x1 | (6) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(0(x1)) | → | 0(s(s(s(s(s(s(s(p(s(x1)))))))))) | (7) |
| v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (12) |
The dependency pairs are split into 0 components.
| p#(p(s(x1))) | → | p#(x1) | (22) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| p#(p(s(x1))) | → | p#(x1) | (22) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.