Certification Problem

Input (TPDB SRS_Standard/Secret_06_SRS/aprove02)

The rewrite relation of the following TRS is considered.

v(s(x1)) s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))))) (1)
v(0(x1)) p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) (2)
w(s(x1)) s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))))))))) (3)
w(0(x1)) p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) (4)
p(p(s(x1))) p(x1) (5)
p(s(x1)) x1 (6)
p(0(x1)) 0(s(s(s(s(s(s(s(p(s(x1)))))))))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[0(x1)] = 0 · x1 + -∞
[v(x1)] = 1 · x1 + -∞
[w(x1)] = 1 · x1 + -∞
[s(x1)] = 0 · x1 + -∞
[p(x1)] = 0 · x1 + -∞
all of the following rules can be deleted.
v(0(x1)) p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) (2)
w(0(x1)) p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) (4)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
v#(s(x1)) p#(s(x1)) (8)
v#(s(x1)) p#(s(p(s(x1)))) (9)
v#(s(x1)) p#(s(s(p(s(p(s(x1))))))) (10)
v#(s(x1)) p#(p(s(s(p(s(p(s(x1)))))))) (11)
v#(s(x1)) w#(p(p(s(s(p(s(p(s(x1))))))))) (12)
v#(s(x1)) p#(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))) (13)
v#(s(x1)) p#(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1))))))))))))))))))) (14)
w#(s(x1)) p#(s(s(x1))) (15)
w#(s(x1)) p#(p(s(s(x1)))) (16)
w#(s(x1)) p#(s(s(s(p(p(s(s(x1)))))))) (17)
w#(s(x1)) p#(p(s(s(s(p(p(s(s(x1))))))))) (18)
w#(s(x1)) v#(p(p(s(s(s(p(p(s(s(x1)))))))))) (19)
w#(s(x1)) p#(s(s(v(p(p(s(s(s(p(p(s(s(x1))))))))))))) (20)
w#(s(x1)) p#(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))) (21)
p#(p(s(x1))) p#(x1) (22)
p#(0(x1)) p#(s(x1)) (23)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.