The rewrite relation of the following TRS is considered.
| foo(0(x1)) | → | 0(s(p(p(p(s(s(s(p(s(x1)))))))))) | (1) |
| foo(s(x1)) | → | p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) | (2) |
| bar(0(x1)) | → | 0(p(s(s(s(x1))))) | (3) |
| bar(s(x1)) | → | p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(x1))))) | (7) |
| foo#(0(x1)) | → | p#(s(x1)) | (8) |
| foo#(0(x1)) | → | p#(s(s(s(p(s(x1)))))) | (9) |
| foo#(0(x1)) | → | p#(p(s(s(s(p(s(x1))))))) | (10) |
| foo#(0(x1)) | → | p#(p(p(s(s(s(p(s(x1)))))))) | (11) |
| foo#(s(x1)) | → | p#(s(x1)) | (12) |
| foo#(s(x1)) | → | p#(s(s(p(s(x1))))) | (13) |
| foo#(s(x1)) | → | p#(p(s(s(p(s(x1)))))) | (14) |
| foo#(s(x1)) | → | bar#(p(p(s(s(p(s(x1))))))) | (15) |
| foo#(s(x1)) | → | p#(s(bar(p(p(s(s(p(s(x1))))))))) | (16) |
| foo#(s(x1)) | → | p#(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))) | (17) |
| foo#(s(x1)) | → | p#(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))) | (18) |
| foo#(s(x1)) | → | foo#(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) | (19) |
| foo#(s(x1)) | → | p#(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))) | (20) |
| foo#(s(x1)) | → | p#(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))))))))) | (21) |
| foo#(s(x1)) | → | p#(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))) | (22) |
| foo#(s(x1)) | → | p#(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))))))))))))) | (23) |
| foo#(s(x1)) | → | p#(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))) | (24) |
| foo#(s(x1)) | → | p#(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) | (25) |
| bar#(0(x1)) | → | p#(s(s(s(x1)))) | (26) |
| bar#(s(x1)) | → | p#(s(s(x1))) | (27) |
| bar#(s(x1)) | → | p#(p(s(s(x1)))) | (28) |
| bar#(s(x1)) | → | foo#(s(p(p(s(s(x1)))))) | (29) |
| bar#(s(x1)) | → | p#(s(s(foo(s(p(p(s(s(x1))))))))) | (30) |
| bar#(s(x1)) | → | p#(p(s(s(foo(s(p(p(s(s(x1)))))))))) | (31) |
| bar#(s(x1)) | → | p#(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) | (32) |
| p#(p(s(x1))) | → | p#(x1) | (33) |
The dependency pairs are split into 2 components.
| bar#(s(x1)) | → | foo#(s(p(p(s(s(x1)))))) | (29) |
| foo#(s(x1)) | → | foo#(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) | (19) |
| foo#(s(x1)) | → | bar#(p(p(s(s(p(s(x1))))))) | (15) |
| [bar(x1)] | = | 1 · x1 + 0 |
| [foo(x1)] | = | 0 · x1 + -16 |
| [p(x1)] | = | -1 · x1 + 0 |
| [foo#(x1)] | = | 0 · x1 + 0 |
| [0(x1)] | = | -∞ · x1 + 0 |
| [bar#(x1)] | = | 0 · x1 + 0 |
| [s(x1)] | = | 1 · x1 + 1 |
| foo(0(x1)) | → | 0(s(p(p(p(s(s(s(p(s(x1)))))))))) | (1) |
| foo(s(x1)) | → | p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) | (2) |
| bar(0(x1)) | → | 0(p(s(s(s(x1))))) | (3) |
| bar(s(x1)) | → | p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(x1))))) | (7) |
| foo#(s(x1)) | → | bar#(p(p(s(s(p(s(x1))))))) | (15) |
The dependency pairs are split into 1 component.
| foo#(s(x1)) | → | foo#(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) | (19) |
| [bar(x1)] | = | 0 · x1 + 0 |
| [foo(x1)] | = | -6 · x1 + 1 |
| [p(x1)] | = | -1 · x1 + 0 |
| [foo#(x1)] | = | 4 · x1 + 0 |
| [0(x1)] | = | -∞ · x1 + 0 |
| [s(x1)] | = | 1 · x1 + 1 |
| foo(0(x1)) | → | 0(s(p(p(p(s(s(s(p(s(x1)))))))))) | (1) |
| foo(s(x1)) | → | p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) | (2) |
| bar(0(x1)) | → | 0(p(s(s(s(x1))))) | (3) |
| bar(s(x1)) | → | p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(x1))))) | (7) |
| foo#(s(x1)) | → | foo#(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) | (19) |
There are no pairs anymore.
| p#(p(s(x1))) | → | p#(x1) | (33) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| p#(p(s(x1))) | → | p#(x1) | (33) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.