The rewrite relation of the following TRS is considered.
| i(0(x1)) | → | p(s(p(s(0(p(s(p(s(x1))))))))) | (1) |
| i(s(x1)) | → | p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) | (2) |
| j(0(x1)) | → | p(s(p(p(s(s(0(p(s(p(s(x1))))))))))) | (3) |
| j(s(x1)) | → | s(s(s(s(p(p(s(s(i(p(s(p(s(x1))))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(s(s(s(s(x1))))))))) | (7) |
| 0(i(x1)) | → | s(p(s(p(0(s(p(s(p(x1))))))))) | (8) |
| s(i(x1)) | → | s(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (9) |
| 0(j(x1)) | → | s(p(s(p(0(s(s(p(p(s(p(x1))))))))))) | (10) |
| s(j(x1)) | → | s(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (11) |
| s(p(p(x1))) | → | p(x1) | (12) |
| s(p(x1)) | → | x1 | (13) |
| 0(p(x1)) | → | s(s(s(s(s(s(s(s(0(x1))))))))) | (14) |
| [j(x1)] | = | 3 · x1 + -∞ |
| [i(x1)] | = | 3 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| [0(x1)] | = | 8 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| 0(i(x1)) | → | s(p(s(p(0(s(p(s(p(x1))))))))) | (8) |
| 0(j(x1)) | → | s(p(s(p(0(s(s(p(p(s(p(x1))))))))))) | (10) |
| s#(i(x1)) | → | s#(p(x1)) | (15) |
| s#(i(x1)) | → | s#(p(s(p(x1)))) | (16) |
| s#(i(x1)) | → | s#(s(p(s(p(x1))))) | (17) |
| s#(i(x1)) | → | s#(p(j(s(s(p(s(p(x1)))))))) | (18) |
| s#(i(x1)) | → | s#(p(s(p(j(s(s(p(s(p(x1)))))))))) | (19) |
| s#(i(x1)) | → | s#(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1))))))))))))))) | (20) |
| s#(i(x1)) | → | s#(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))) | (21) |
| s#(i(x1)) | → | s#(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1))))))))))))))))) | (22) |
| s#(i(x1)) | → | s#(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (23) |
| s#(j(x1)) | → | s#(x1) | (24) |
| s#(j(x1)) | → | s#(s(x1)) | (25) |
| s#(j(x1)) | → | s#(s(s(x1))) | (26) |
| s#(j(x1)) | → | s#(s(s(s(x1)))) | (27) |
| s#(j(x1)) | → | s#(p(p(s(s(s(s(x1))))))) | (28) |
| s#(j(x1)) | → | s#(s(p(p(s(s(s(s(x1)))))))) | (29) |
| s#(j(x1)) | → | s#(p(i(s(s(p(p(s(s(s(s(x1))))))))))) | (30) |
| s#(j(x1)) | → | s#(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (31) |
| 0#(p(x1)) | → | 0#(x1) | (32) |
| 0#(p(x1)) | → | s#(0(x1)) | (33) |
| 0#(p(x1)) | → | s#(s(0(x1))) | (34) |
| 0#(p(x1)) | → | s#(s(s(0(x1)))) | (35) |
| 0#(p(x1)) | → | s#(s(s(s(0(x1))))) | (36) |
| 0#(p(x1)) | → | s#(s(s(s(s(0(x1)))))) | (37) |
| 0#(p(x1)) | → | s#(s(s(s(s(s(0(x1))))))) | (38) |
| 0#(p(x1)) | → | s#(s(s(s(s(s(s(0(x1)))))))) | (39) |
| 0#(p(x1)) | → | s#(s(s(s(s(s(s(s(0(x1))))))))) | (40) |
The dependency pairs are split into 2 components.
| 0#(p(x1)) | → | 0#(x1) | (32) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 0#(p(x1)) | → | 0#(x1) | (32) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| s#(j(x1)) | → | s#(s(p(p(s(s(s(s(x1)))))))) | (29) |
| s#(j(x1)) | → | s#(s(s(s(x1)))) | (27) |
| s#(j(x1)) | → | s#(s(s(x1))) | (26) |
| s#(j(x1)) | → | s#(s(x1)) | (25) |
| s#(j(x1)) | → | s#(x1) | (24) |
| s#(i(x1)) | → | s#(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (23) |
| s#(i(x1)) | → | s#(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1))))))))))))))))) | (22) |
| s#(i(x1)) | → | s#(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))) | (21) |
| s#(i(x1)) | → | s#(s(p(s(p(x1))))) | (17) |
| [j(x1)] | = | 2 · x1 + 3 |
| [i(x1)] | = | 2 · x1 + 3 |
| [p(x1)] | = | 0 · x1 + 0 |
| [s#(x1)] | = | 0 · x1 + 0 |
| [s(x1)] | = | 0 · x1 + 0 |
| s(i(x1)) | → | s(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (9) |
| s(j(x1)) | → | s(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (11) |
| s(p(p(x1))) | → | p(x1) | (12) |
| s(p(x1)) | → | x1 | (13) |
| s#(j(x1)) | → | s#(s(p(p(s(s(s(s(x1)))))))) | (29) |
| s#(j(x1)) | → | s#(s(s(s(x1)))) | (27) |
| s#(j(x1)) | → | s#(s(s(x1))) | (26) |
| s#(j(x1)) | → | s#(s(x1)) | (25) |
| s#(j(x1)) | → | s#(x1) | (24) |
| s#(i(x1)) | → | s#(s(p(s(p(x1))))) | (17) |
| [j(x1)] | = |
|
||||||||||||||
| [i(x1)] | = |
|
||||||||||||||
| [p(x1)] | = |
|
||||||||||||||
| [s#(x1)] | = |
|
||||||||||||||
| [s(x1)] | = |
|
| s(p(p(x1))) | → | p(x1) | (12) |
| s(p(x1)) | → | x1 | (13) |
| s(i(x1)) | → | s(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (9) |
| s(j(x1)) | → | s(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (11) |
| s#(i(x1)) | → | s#(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1))))))))))))))))) | (22) |
| [j(x1)] | = | -∞ · x1 + 3 |
| [i(x1)] | = | -∞ · x1 + 4 |
| [p(x1)] | = | -1 · x1 + 1 |
| [s#(x1)] | = | 1 · x1 + 4 |
| [s(x1)] | = | 1 · x1 + 1 |
| s(p(p(x1))) | → | p(x1) | (12) |
| s(p(x1)) | → | x1 | (13) |
| s(i(x1)) | → | s(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (9) |
| s(j(x1)) | → | s(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (11) |
| s#(i(x1)) | → | s#(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))) | (21) |
| [j(x1)] | = | -∞ · x1 + 5 |
| [i(x1)] | = | -∞ · x1 + 6 |
| [p(x1)] | = | -1 · x1 + 0 |
| [s#(x1)] | = | -4 · x1 + 0 |
| [s(x1)] | = | 1 · x1 + 0 |
| s(p(p(x1))) | → | p(x1) | (12) |
| s(p(x1)) | → | x1 | (13) |
| s(i(x1)) | → | s(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (9) |
| s(j(x1)) | → | s(p(s(p(i(s(s(p(p(s(s(s(s(x1))))))))))))) | (11) |
| s#(i(x1)) | → | s#(s(s(s(p(p(p(p(s(p(s(p(j(s(s(p(s(p(x1)))))))))))))))))) | (23) |
There are no pairs anymore.