The rewrite relation of the following TRS is considered.
a(b(b(x1))) | → | P(a(b(x1))) | (1) |
a(P(x1)) | → | P(a(x(x1))) | (2) |
a(x(x1)) | → | x(a(x1)) | (3) |
b(P(x1)) | → | b(Q(x1)) | (4) |
Q(x(x1)) | → | a(Q(x1)) | (5) |
Q(a(x1)) | → | b(b(a(x1))) | (6) |
a#(b(b(x1))) | → | a#(b(x1)) | (7) |
a#(P(x1)) | → | a#(x(x1)) | (8) |
a#(x(x1)) | → | a#(x1) | (9) |
b#(P(x1)) | → | Q#(x1) | (10) |
b#(P(x1)) | → | b#(Q(x1)) | (11) |
Q#(x(x1)) | → | Q#(x1) | (12) |
Q#(x(x1)) | → | a#(Q(x1)) | (13) |
Q#(a(x1)) | → | b#(a(x1)) | (14) |
Q#(a(x1)) | → | b#(b(a(x1))) | (15) |
The dependency pairs are split into 3 components.
Q#(x(x1)) | → | Q#(x1) | (12) |
Q#(a(x1)) | → | b#(a(x1)) | (14) |
b#(P(x1)) | → | b#(Q(x1)) | (11) |
b#(P(x1)) | → | Q#(x1) | (10) |
[Q(x1)] | = |
|
||||||||||||||
[a(x1)] | = |
|
||||||||||||||
[x(x1)] | = |
|
||||||||||||||
[b(x1)] | = |
|
||||||||||||||
[Q#(x1)] | = |
|
||||||||||||||
[b#(x1)] | = |
|
||||||||||||||
[P(x1)] | = |
|
a(b(b(x1))) | → | P(a(b(x1))) | (1) |
a(P(x1)) | → | P(a(x(x1))) | (2) |
a(x(x1)) | → | x(a(x1)) | (3) |
b(P(x1)) | → | b(Q(x1)) | (4) |
Q(x(x1)) | → | a(Q(x1)) | (5) |
Q(a(x1)) | → | b(b(a(x1))) | (6) |
b#(P(x1)) | → | b#(Q(x1)) | (11) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Q#(x(x1)) | → | Q#(x1) | (12) |
1 | > | 1 | |
Q#(a(x1)) | → | b#(a(x1)) | (14) |
1 | ≥ | 1 | |
b#(P(x1)) | → | Q#(x1) | (10) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
a#(x(x1)) | → | a#(x1) | (9) |
a#(P(x1)) | → | a#(x(x1)) | (8) |
π(a#) | = | { 1 } |
π(x) | = | { 1 } |
a#(P(x1)) | → | a#(x(x1)) | (8) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
a#(x(x1)) | → | a#(x1) | (9) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
a#(b(b(x1))) | → | a#(b(x1)) | (7) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
a#(b(b(x1))) | → | a#(b(x1)) | (7) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.