The rewrite relation of the following TRS is considered.
t(f(x1)) | → | t(c(n(x1))) | (1) |
n(f(x1)) | → | f(n(x1)) | (2) |
o(f(x1)) | → | f(o(x1)) | (3) |
n(s(x1)) | → | f(s(x1)) | (4) |
o(s(x1)) | → | f(s(x1)) | (5) |
c(f(x1)) | → | f(c(x1)) | (6) |
c(n(x1)) | → | n(c(x1)) | (7) |
c(o(x1)) | → | o(c(x1)) | (8) |
c(o(x1)) | → | o(x1) | (9) |
[o(x1)] | = | 8 · x1 + -∞ |
[t(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
[f(x1)] | = | 0 · x1 + -∞ |
[n(x1)] | = | 0 · x1 + -∞ |
o(s(x1)) | → | f(s(x1)) | (5) |
[o(x1)] | = |
|
||||||||||||||||||||||||
[t(x1)] | = |
|
||||||||||||||||||||||||
[c(x1)] | = |
|
||||||||||||||||||||||||
[s(x1)] | = |
|
||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||
[n(x1)] | = |
|
n(s(x1)) | → | f(s(x1)) | (4) |
prec(o) | = | 1 | weight(o) | = | 2 | ||||
prec(c) | = | 3 | weight(c) | = | 2 | ||||
prec(n) | = | 2 | weight(n) | = | 1 | ||||
prec(t) | = | 7 | weight(t) | = | 2 | ||||
prec(f) | = | 0 | weight(f) | = | 6 |
t(f(x1)) | → | t(c(n(x1))) | (1) |
n(f(x1)) | → | f(n(x1)) | (2) |
o(f(x1)) | → | f(o(x1)) | (3) |
c(f(x1)) | → | f(c(x1)) | (6) |
c(n(x1)) | → | n(c(x1)) | (7) |
c(o(x1)) | → | o(c(x1)) | (8) |
c(o(x1)) | → | o(x1) | (9) |
There are no rules in the TRS. Hence, it is terminating.