The rewrite relation of the following TRS is considered.
| t(f(x1)) | → | t(c(n(x1))) | (1) |
| n(f(x1)) | → | f(n(x1)) | (2) |
| o(f(x1)) | → | f(o(x1)) | (3) |
| n(s(x1)) | → | f(s(x1)) | (4) |
| o(s(x1)) | → | f(s(x1)) | (5) |
| c(f(x1)) | → | f(c(x1)) | (6) |
| c(n(x1)) | → | n(c(x1)) | (7) |
| c(o(x1)) | → | o(c(x1)) | (8) |
| c(o(x1)) | → | o(x1) | (9) |
| [o(x1)] | = | 8 · x1 + -∞ |
| [t(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 0 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| [f(x1)] | = | 0 · x1 + -∞ |
| [n(x1)] | = | 0 · x1 + -∞ |
| o(s(x1)) | → | f(s(x1)) | (5) |
| [o(x1)] | = |
|
||||||||||||||||||||||||
| [t(x1)] | = |
|
||||||||||||||||||||||||
| [c(x1)] | = |
|
||||||||||||||||||||||||
| [s(x1)] | = |
|
||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||
| [n(x1)] | = |
|
| n(s(x1)) | → | f(s(x1)) | (4) |
| prec(o) | = | 1 | weight(o) | = | 2 | ||||
| prec(c) | = | 3 | weight(c) | = | 2 | ||||
| prec(n) | = | 2 | weight(n) | = | 1 | ||||
| prec(t) | = | 7 | weight(t) | = | 2 | ||||
| prec(f) | = | 0 | weight(f) | = | 6 |
| t(f(x1)) | → | t(c(n(x1))) | (1) |
| n(f(x1)) | → | f(n(x1)) | (2) |
| o(f(x1)) | → | f(o(x1)) | (3) |
| c(f(x1)) | → | f(c(x1)) | (6) |
| c(n(x1)) | → | n(c(x1)) | (7) |
| c(o(x1)) | → | o(c(x1)) | (8) |
| c(o(x1)) | → | o(x1) | (9) |
There are no rules in the TRS. Hence, it is terminating.