The rewrite relation of the following TRS is considered.
a(a(a(b(b(b(x1)))))) | → | b(b(b(b(a(a(a(a(x1)))))))) | (1) |
b(b(b(a(a(a(x1)))))) | → | a(a(a(a(b(b(b(b(x1)))))))) | (2) |
final states:
{2, 1}
transitions:
32 | → | 5 |
128 | → | 64 |
128 | → | 36 |
202 | → | 151 |
202 | → | 184 |
10 | → | 46 |
97 | → | 5 |
84 | → | 5 |
211 | → | 164 |
145 | → | 101 |
260 | → | 206 |
41 | → | 5 |
41 | → | 6 |
41 | → | 31 |
41 | → | 1 |
41 | → | 7 |
41 | → | 32 |
39 | → | 85 |
184 | → | 151 |
108 | → | 36 |
9 | → | 48 |
9 | → | 61 |
37 | → | 138 |
65 | → | 183 |
199 | → | 243 |
99 | → | 62 |
224 | → | 152 |
49 | → | 34 |
1 | → | 31 |
40 | → | 83 |
8 | → | 100 |
139 | → | 62 |
125 | → | 161 |
125 | → | 216 |
38 | → | 96 |
38 | → | 98 |
86 | → | 5 |
251 | → | 154 |
171 | → | 162 |
105 | → | 170 |
67 | → | 120 |
2 | → | 4 |
11 | → | 33 |
66 | → | 129 |
66 | → | 150 |
12 | → | 1 |
12 | → | 5 |
12 | → | 6 |
12 | → | 7 |
12 | → | 32 |
169 | → | 63 |
69 | → | 7 |
69 | → | 8 |
69 | → | 102 |
69 | → | 101 |
137 | → | 102 |
158 | → | 103 |
158 | → | 104 |
278 | → | 255 |
47 | → | 34 |
250 | → | 252 |
68 | → | 144 |
166 | → | 194 |
156 | → | 203 |
247 | → | 270 |
a4(256) | → | 257 |
a4(248) | → | 249 |
a4(249) | → | 250 |
a4(247) | → | 248 |
a4(258) | → | 259 |
a4(250) | → | 251 |
a4(259) | → | 260 |
a4(257) | → | 258 |
b4(255) | → | 256 |
b4(254) | → | 255 |
b4(245) | → | 246 |
b4(243) | → | 244 |
b4(253) | → | 254 |
b4(244) | → | 245 |
b4(252) | → | 253 |
b4(246) | → | 247 |
b3(151) | → | 152 |
b3(219) | → | 220 |
b3(206) | → | 207 |
b3(150) | → | 151 |
b3(218) | → | 219 |
b3(216) | → | 217 |
b3(183) | → | 184 |
b3(217) | → | 218 |
b3(205) | → | 206 |
b3(203) | → | 204 |
b3(152) | → | 153 |
b3(194) | → | 195 |
b3(197) | → | 198 |
b3(195) | → | 196 |
b3(204) | → | 205 |
b3(196) | → | 197 |
b3(153) | → | 154 |
b1(33) | → | 34 |
b1(85) | → | 86 |
b1(5) | → | 6 |
b1(7) | → | 8 |
b1(83) | → | 84 |
b1(6) | → | 7 |
b1(31) | → | 32 |
b1(36) | → | 37 |
b1(4) | → | 5 |
b1(96) | → | 97 |
b1(46) | → | 47 |
b1(48) | → | 49 |
b1(35) | → | 36 |
b1(34) | → | 35 |
a1(11) | → | 12 |
a1(40) | → | 41 |
a1(8) | → | 9 |
a1(38) | → | 39 |
a1(9) | → | 10 |
a1(39) | → | 40 |
a1(37) | → | 38 |
a1(10) | → | 11 |
a5(277) | → | 278 |
a5(275) | → | 276 |
a5(276) | → | 277 |
a5(274) | → | 275 |
b5(273) | → | 274 |
b5(270) | → | 271 |
b5(271) | → | 272 |
b5(272) | → | 273 |
a0(1) | → | 2 |
a0(2) | → | 2 |
b2(164) | → | 165 |
b2(130) | → | 131 |
b2(132) | → | 133 |
b2(121) | → | 122 |
b2(61) | → | 62 |
b2(120) | → | 121 |
b2(122) | → | 123 |
b2(163) | → | 164 |
b2(101) | → | 102 |
b2(100) | → | 101 |
b2(131) | → | 132 |
b2(63) | → | 64 |
b2(162) | → | 163 |
b2(161) | → | 162 |
b2(138) | → | 139 |
b2(64) | → | 65 |
b2(103) | → | 104 |
b2(123) | → | 124 |
b2(98) | → | 99 |
b2(62) | → | 63 |
b2(144) | → | 145 |
b2(170) | → | 171 |
b2(102) | → | 103 |
b2(129) | → | 130 |
a3(157) | → | 158 |
a3(156) | → | 157 |
a3(220) | → | 221 |
a3(222) | → | 223 |
a3(155) | → | 156 |
a3(223) | → | 224 |
a3(198) | → | 199 |
a3(221) | → | 222 |
a3(208) | → | 209 |
a3(201) | → | 202 |
a3(154) | → | 155 |
a3(209) | → | 210 |
a3(210) | → | 211 |
a3(199) | → | 200 |
a3(200) | → | 201 |
a3(207) | → | 208 |
b0(1) | → | 1 |
b0(2) | → | 1 |
a2(66) | → | 67 |
a2(67) | → | 68 |
a2(107) | → | 108 |
a2(104) | → | 105 |
a2(134) | → | 135 |
a2(166) | → | 167 |
a2(125) | → | 126 |
a2(127) | → | 128 |
a2(124) | → | 125 |
a2(105) | → | 106 |
a2(168) | → | 169 |
a2(126) | → | 127 |
a2(106) | → | 107 |
a2(68) | → | 69 |
a2(136) | → | 137 |
a2(135) | → | 136 |
a2(165) | → | 166 |
a2(65) | → | 66 |
a2(167) | → | 168 |
a2(133) | → | 134 |