The rewrite relation of the following equational TRS is considered.
| p(s(x)) | → | x | (1) |
| plus(x,0) | → | x | (2) |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| times(x,0) | → | 0 | (4) |
| times(x,s(y)) | → | plus(x,times(x,y)) | (5) |
| minus(x,0) | → | x | (6) |
| minus(s(x),s(y)) | → | minus(p(s(x)),p(s(y))) | (7) |
| div(0,s(y)) | → | 0 | (8) |
| div(s(x),s(y)) | → | s(div(minus(x,y),s(y))) | (9) |
Associative symbols: plus, times
Commutative symbols: plus, times
The following set of (strict) dependency pairs is constructed for the TRS.
| plus#(x,s(y)) | → | plus#(x,y) | (20) |
| times#(x,s(y)) | → | plus#(x,times(x,y)) | (21) |
| times#(x,s(y)) | → | times#(x,y) | (22) |
| minus#(s(x),s(y)) | → | minus#(p(s(x)),p(s(y))) | (23) |
| minus#(s(x),s(y)) | → | p#(s(x)) | (24) |
| minus#(s(x),s(y)) | → | p#(s(y)) | (25) |
| div#(s(x),s(y)) | → | div#(minus(x,y),s(y)) | (26) |
| div#(s(x),s(y)) | → | minus#(x,y) | (27) |
| plus#(plus(x,0),ext) | → | plus#(x,ext) | (28) |
| plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (29) |
| plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (30) |
| times#(times(x,0),ext) | → | times#(0,ext) | (31) |
| times#(times(x,s(y)),ext) | → | times#(plus(x,times(x,y)),ext) | (32) |
| times#(times(x,s(y)),ext) | → | plus#(x,times(x,y)) | (33) |
| times#(times(x,s(y)),ext) | → | times#(x,y) | (34) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| times(times(x,0),ext) | → | times(0,ext) | (37) |
| times(times(x,s(y)),ext) | → | times(plus(x,times(x,y)),ext) | (38) |
The dependency pairs are split into 4 components.
| times#(times(x,0),ext) | → | times#(0,ext) | (31) |
| times#(x,s(y)) | → | times#(x,y) | (22) |
| times#(times(x,s(y)),ext) | → | times#(plus(x,times(x,y)),ext) | (32) |
| times#(times(x,s(y)),ext) | → | times#(x,y) | (34) |
| times#(times(x,y),z) | → | times#(y,z) | (19) |
| times#(x,y) | → | times#(y,x) | (15) |
| times#(times(x,y),z) | → | times#(x,times(y,z)) | (17) |
| [times#(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [times(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [s(x1)] | = | 1 + 1 · x1 |
| [plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| [0] | = | 0 |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(x,0) | → | x | (2) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| times(x,s(y)) | → | plus(x,times(x,y)) | (5) |
| times(times(x,s(y)),ext) | → | times(plus(x,times(x,y)),ext) | (38) |
| times(times(x,0),ext) | → | times(0,ext) | (37) |
| times(x,0) | → | 0 | (4) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| plus(x,y) | → | plus(y,x) | (10) |
| times(x,y) | → | times(y,x) | (11) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (13) |
| times#(times(x,s(y)),ext) | → | times#(plus(x,times(x,y)),ext) | (32) |
| times#(times(x,s(y)),ext) | → | times#(x,y) | (34) |
| times#(x,s(y)) | → | times#(x,y) | (22) |
| [times#(x1, x2)] | = | 2 · x2 + 2 · x1 + 1 · x1 · x2 |
| [times(x1, x2)] | = | 2 + 2 · x2 + 2 · x1 + 1 · x1 · x2 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| [plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| times(x,s(y)) | → | plus(x,times(x,y)) | (5) |
| times(times(x,s(y)),ext) | → | times(plus(x,times(x,y)),ext) | (38) |
| times(times(x,0),ext) | → | times(0,ext) | (37) |
| times(x,0) | → | 0 | (4) |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(x,0) | → | x | (2) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| times(x,y) | → | times(y,x) | (11) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (13) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| plus(x,y) | → | plus(y,x) | (10) |
| times#(times(x,y),z) | → | times#(y,z) | (19) |
| times#(times(x,0),ext) | → | times#(0,ext) | (31) |
| plus#(plus(x,0),ext) | → | plus#(x,ext) | (28) |
| plus#(x,s(y)) | → | plus#(x,y) | (20) |
| plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (29) |
| plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (30) |
| plus#(plus(x,y),z) | → | plus#(y,z) | (18) |
| plus#(x,y) | → | plus#(y,x) | (14) |
| plus#(plus(x,y),z) | → | plus#(x,plus(y,z)) | (16) |
| [plus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s(x1)] | = | 1 · x1 |
| [0] | = | 0 |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(x,0) | → | x | (2) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| plus(x,y) | → | plus(y,x) | (10) |
| plus#(plus(x,0),ext) | → | plus#(x,ext) | (28) |
| p(s(x)) | → | x | (1) |
| plus(x,0) | → | x | (2) |
| times(x,0) | → | 0 | (4) |
| times(x,s(y)) | → | plus(x,times(x,y)) | (5) |
| minus(x,0) | → | x | (6) |
| minus(s(x),s(y)) | → | minus(p(s(x)),p(s(y))) | (7) |
| div(0,s(y)) | → | 0 | (8) |
| div(s(x),s(y)) | → | s(div(minus(x,y),s(y))) | (9) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| times(times(x,0),ext) | → | times(0,ext) | (37) |
| times(times(x,s(y)),ext) | → | times(plus(x,times(x,y)),ext) | (38) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s(x1)] | = | 1 + 1 · x1 |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(x,y) | → | plus(y,x) | (10) |
| times(x,y) | → | times(y,x) | (11) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (13) |
| plus#(plus(x,s(y)),ext) | → | plus#(x,y) | (30) |
| plus#(x,s(y)) | → | plus#(x,y) | (20) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s(x1)] | = | 1 · x1 |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(x,y) | → | plus(y,x) | (10) |
| times(x,y) | → | times(y,x) | (11) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (13) |
| plus#(plus(x,y),z) | → | plus#(y,z) | (18) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [s(x1)] | = | 0 |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| plus(x,y) | → | plus(y,x) | (10) |
| plus#(plus(x,s(y)),ext) | → | plus#(s(plus(x,y)),ext) | (29) |
| div#(s(x),s(y)) | → | div#(minus(x,y),s(y)) | (26) |
| [div#(x1, x2)] | = | 2 · x1 |
| [s(x1)] | = | 2 + 2 · x1 |
| [minus(x1, x2)] | = | 1 · x1 |
| [p(x1)] | = | 1 · x1 |
| [0] | = | 0 |
| minus(s(x),s(y)) | → | minus(p(s(x)),p(s(y))) | (7) |
| minus(x,0) | → | x | (6) |
| p(s(x)) | → | x | (1) |
| div#(s(x),s(y)) | → | div#(minus(x,y),s(y)) | (26) |
| minus#(s(x),s(y)) | → | minus#(p(s(x)),p(s(y))) | (23) |
| [p(x1)] | = | 1 · x1 |
| [s(x1)] | = | 1 · x1 |
| [minus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| p(s(x)) | → | x | (1) |
| plus(x,0) | → | x | (2) |
| plus(x,s(y)) | → | s(plus(x,y)) | (3) |
| times(x,0) | → | 0 | (4) |
| times(x,s(y)) | → | plus(x,times(x,y)) | (5) |
| minus(x,0) | → | x | (6) |
| minus(s(x),s(y)) | → | minus(p(s(x)),p(s(y))) | (7) |
| div(0,s(y)) | → | 0 | (8) |
| div(s(x),s(y)) | → | s(div(minus(x,y),s(y))) | (9) |
| plus(plus(x,0),ext) | → | plus(x,ext) | (35) |
| plus(plus(x,s(y)),ext) | → | plus(s(plus(x,y)),ext) | (36) |
| times(times(x,0),ext) | → | times(0,ext) | (37) |
| times(times(x,s(y)),ext) | → | times(plus(x,times(x,y)),ext) | (38) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [p(x1)] | = | 1 · x1 |
| [s(x1)] | = | 2 + 1 · x1 |
| [minus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
| p(s(x)) | → | x | (1) |
| plus(x,y) | → | plus(y,x) | (10) |
| times(x,y) | → | times(y,x) | (11) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (12) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (13) |
| p(s(x)) | → | x | (1) |
The dependency pairs are split into 0 components.