Certification Problem

Input (TPDB TRS_Equational/AProVE_AC_04/AC06)

The rewrite relation of the following equational TRS is considered.

s(p(x)) x (1)
p(s(x)) x (2)
plus(0,y) y (3)
plus(s(x),y) s(plus(x,y)) (4)
plus(p(x),y) p(plus(x,y)) (5)
plus(i(x),x) 0 (6)
plus(x,plus(i(x),y)) y (7)
i(0) 0 (8)
i(s(x)) p(i(x)) (9)
i(p(x)) s(i(x)) (10)
i(i(x)) x (11)
i(plus(x,y)) plus(i(y),i(x)) (12)
times(0,y) 0 (13)
times(s(x),y) plus(times(x,y),y) (14)
times(p(x),y) plus(times(x,y),i(y)) (15)

Associative symbols: plus, times

Commutative symbols: plus, times

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 1 · x2 + 1 · x1
[times(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[s(x1)] = 2 + 1 · x1
[p(x1)] = 2 + 1 · x1
[0] = 0
[i(x1)] = 1 · x1
the rules
s(p(x)) x (1)
p(s(x)) x (2)
times(s(x),y) plus(times(x,y),y) (14)
times(p(x),y) plus(times(x,y),i(y)) (15)
can be deleted.

1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[times(x1, x2)] = 2 + 1 · x2 + 1 · x1
[0] = 0
[s(x1)] = 2 + 2 · x1
[p(x1)] = 2 + 2 · x1
[i(x1)] = 1 · x1
the rule
times(0,y) 0 (13)
can be deleted.

1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[times(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[0] = 0
[s(x1)] = 3 + 3 · x1
[p(x1)] = 2 + 2 · x1
[i(x1)] = 1 · x1 + 2 · x1 · x1
the rules
i(s(x)) p(i(x)) (9)
i(p(x)) s(i(x)) (10)
can be deleted.

1.1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 2 + 1 · x2 + 1 · x1
[times(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[0] = 0
[s(x1)] = 1 · x1
[p(x1)] = 1 · x1
[i(x1)] = 2 · x1 + 2 · x1 · x1
the rules
plus(0,y) y (3)
plus(i(x),x) 0 (6)
plus(x,plus(i(x),y)) y (7)
i(plus(x,y)) plus(i(y),i(x)) (12)
can be deleted.

1.1.1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[times(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[s(x1)] = 2 + 2 · x1
[p(x1)] = 1 · x1
[i(x1)] = 1 + 1 · x1
[0] = 3
the rules
plus(s(x),y) s(plus(x,y)) (4)
i(0) 0 (8)
i(i(x)) x (11)
can be deleted.

1.1.1.1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[times(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[p(x1)] = 2 + 1 · x1
the rule
plus(p(x),y) p(plus(x,y)) (5)
can be deleted.

1.1.1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is AC-terminating.