The rewrite relation of the following equational TRS is considered.
| 0(S) | → | S | (1) |
| plus(S,x) | → | x | (2) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
Associative symbols: plus, times
Commutative symbols: plus, times
The following set of (strict) dependency pairs is constructed for the TRS.
| plus#(0(x),0(y)) | → | 0#(plus(x,y)) | (49) |
| plus#(0(x),0(y)) | → | plus#(x,y) | (50) |
| plus#(0(x),1(y)) | → | plus#(x,y) | (51) |
| plus#(0(x),j(y)) | → | plus#(x,y) | (52) |
| plus#(1(x),1(y)) | → | plus#(1(S),plus(x,y)) | (53) |
| plus#(1(x),1(y)) | → | plus#(x,y) | (54) |
| plus#(j(x),j(y)) | → | plus#(j(S),plus(x,y)) | (55) |
| plus#(j(x),j(y)) | → | plus#(x,y) | (56) |
| plus#(1(x),j(y)) | → | 0#(plus(x,y)) | (57) |
| plus#(1(x),j(y)) | → | plus#(x,y) | (58) |
| opp#(0(x)) | → | 0#(opp(x)) | (59) |
| opp#(0(x)) | → | opp#(x) | (60) |
| opp#(1(x)) | → | opp#(x) | (61) |
| opp#(j(x)) | → | opp#(x) | (62) |
| minus#(x,y) | → | plus#(opp(y),x) | (63) |
| minus#(x,y) | → | opp#(y) | (64) |
| times#(0(x),y) | → | 0#(times(x,y)) | (65) |
| times#(0(x),y) | → | times#(x,y) | (66) |
| times#(1(x),y) | → | plus#(0(times(x,y)),y) | (67) |
| times#(1(x),y) | → | 0#(times(x,y)) | (68) |
| times#(1(x),y) | → | times#(x,y) | (69) |
| times#(j(x),y) | → | minus#(0(times(x,y)),y) | (70) |
| times#(j(x),y) | → | 0#(times(x,y)) | (71) |
| times#(j(x),y) | → | times#(x,y) | (72) |
| sign#(x) | → | if_sign#(x,S) | (73) |
| if_sign#(0(x),y) | → | if_sign#(x,y) | (74) |
| if_sign#(1(x),y) | → | if_sign#(x,1(S)) | (75) |
| if_sign#(j(x),y) | → | if_sign#(x,j(S)) | (76) |
| abs#(x) | → | if_abs#(x,x,S) | (77) |
| if_abs#(0(x),y,z) | → | if_abs#(x,y,z) | (78) |
| if_abs#(1(x),y,z) | → | if_abs#(x,y,1(S)) | (79) |
| if_abs#(j(x),y,z) | → | if_abs#(x,y,j(S)) | (80) |
| if_abs#(S,x,j(S)) | → | opp#(x) | (81) |
| min#(x,y) | → | if_min#(minus(abs(y),abs(x)),x,y,S) | (82) |
| min#(x,y) | → | minus#(abs(y),abs(x)) | (83) |
| min#(x,y) | → | abs#(y) | (84) |
| min#(x,y) | → | abs#(x) | (85) |
| min'#(x,y) | → | if_min#(minus(abs(1(y)),abs(1(x))),x,y,S) | (86) |
| min'#(x,y) | → | minus#(abs(1(y)),abs(1(x))) | (87) |
| min'#(x,y) | → | abs#(1(y)) | (88) |
| min'#(x,y) | → | abs#(1(x)) | (89) |
| min''#(x,y) | → | if_min#(minus(abs(j(y)),abs(j(x))),x,y,S) | (90) |
| min''#(x,y) | → | minus#(abs(j(y)),abs(j(x))) | (91) |
| min''#(x,y) | → | abs#(j(y)) | (92) |
| min''#(x,y) | → | abs#(j(x)) | (93) |
| if_min#(0(x),y,z,u) | → | if_min#(x,y,z,u) | (94) |
| if_min#(1(x),y,z,u) | → | if_min#(x,y,z,1(S)) | (95) |
| if_min#(j(x),y,z,u) | → | if_min#(x,y,z,j(S)) | (96) |
| plus#(plus(S,x),ext) | → | plus#(x,ext) | (97) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(0(plus(x,y)),ext) | (98) |
| plus#(plus(0(x),0(y)),ext) | → | 0#(plus(x,y)) | (99) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(x,y) | (100) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(1(plus(x,y)),ext) | (101) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(x,y) | (102) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(j(plus(x,y)),ext) | (103) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(x,y) | (104) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(j(plus(1(S),plus(x,y))),ext) | (105) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(1(S),plus(x,y)) | (106) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(x,y) | (107) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(1(plus(j(S),plus(x,y))),ext) | (108) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(j(S),plus(x,y)) | (109) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(x,y) | (110) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(0(plus(x,y)),ext) | (111) |
| plus#(plus(1(x),j(y)),ext) | → | 0#(plus(x,y)) | (112) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(x,y) | (113) |
| times#(times(S,x),ext) | → | times#(S,ext) | (114) |
| times#(times(0(x),y),ext) | → | times#(0(times(x,y)),ext) | (115) |
| times#(times(0(x),y),ext) | → | 0#(times(x,y)) | (116) |
| times#(times(0(x),y),ext) | → | times#(x,y) | (117) |
| times#(times(1(x),y),ext) | → | times#(plus(0(times(x,y)),y),ext) | (118) |
| times#(times(1(x),y),ext) | → | plus#(0(times(x,y)),y) | (119) |
| times#(times(1(x),y),ext) | → | 0#(times(x,y)) | (120) |
| times#(times(1(x),y),ext) | → | times#(x,y) | (121) |
| times#(times(j(x),y),ext) | → | times#(minus(0(times(x,y)),y),ext) | (122) |
| times#(times(j(x),y),ext) | → | minus#(0(times(x,y)),y) | (123) |
| times#(times(j(x),y),ext) | → | 0#(times(x,y)) | (124) |
| times#(times(j(x),y),ext) | → | times#(x,y) | (125) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
The dependency pairs are split into 6 components.
| times#(1(x),y) | → | times#(x,y) | (69) |
| times#(0(x),y) | → | times#(x,y) | (66) |
| times#(j(x),y) | → | times#(x,y) | (72) |
| times#(times(S,x),ext) | → | times#(S,ext) | (114) |
| times#(times(0(x),y),ext) | → | times#(0(times(x,y)),ext) | (115) |
| times#(times(0(x),y),ext) | → | times#(x,y) | (117) |
| times#(times(1(x),y),ext) | → | times#(plus(0(times(x,y)),y),ext) | (118) |
| times#(times(1(x),y),ext) | → | times#(x,y) | (121) |
| times#(times(j(x),y),ext) | → | times#(minus(0(times(x,y)),y),ext) | (122) |
| times#(times(j(x),y),ext) | → | times#(x,y) | (125) |
| times#(times(x,y),z) | → | times#(y,z) | (48) |
| times#(x,y) | → | times#(y,x) | (44) |
| times#(times(x,y),z) | → | times#(x,times(y,z)) | (46) |
| [times#(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [times(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [0(x1)] | = | 1 · x1 |
| [j(x1)] | = | 1 + 1 · x1 |
| [minus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| [S] | = | 0 |
| [1(x1)] | = | 1 + 1 · x1 |
| [plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| [opp(x1)] | = | 1 · x1 |
| times(S,x) | → | S | (14) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(S,x) | → | x | (2) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(S) | → | S | (9) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| 0(S) | → | S | (1) |
| times(x,y) | → | times(y,x) | (40) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| times#(times(j(x),y),ext) | → | times#(x,y) | (125) |
| times#(times(j(x),y),ext) | → | times#(minus(0(times(x,y)),y),ext) | (122) |
| times#(times(1(x),y),ext) | → | times#(plus(0(times(x,y)),y),ext) | (118) |
| times#(1(x),y) | → | times#(x,y) | (69) |
| times#(j(x),y) | → | times#(x,y) | (72) |
| times#(times(1(x),y),ext) | → | times#(x,y) | (121) |
| [times#(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [times(x1, x2)] | = | 1 · x2 + 1 · x1 + 1 · x1 · x2 |
| [0(x1)] | = | 1 + 1 · x1 |
| [S] | = | 0 |
| [plus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| [1(x1)] | = | 1 + 1 · x1 |
| [j(x1)] | = | 1 + 1 · x1 |
| [opp(x1)] | = | 1 · x1 |
| [minus(x1, x2)] | = | 1 · x2 + 1 · x1 |
| 0(S) | → | S | (1) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(S,x) | → | x | (2) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(S) | → | S | (9) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| times#(times(0(x),y),ext) | → | times#(x,y) | (117) |
| times#(0(x),y) | → | times#(x,y) | (66) |
| [times#(x1, x2)] | = | 3 · x1 + 3 · x2 |
| [times(x1, x2)] | = | 3 + 1 · x1 + 1 · x2 |
| [S] | = | 0 |
| [0(x1)] | = | 3 |
| [minus(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
| [opp(x1)] | = | 1 · x1 |
| [1(x1)] | = | 3 |
| [j(x1)] | = | 3 |
| 0(S) | → | S | (1) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(S) | → | S | (9) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(S,x) | → | x | (2) |
| times(S,x) | → | S | (14) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| times#(times(x,y),z) | → | times#(y,z) | (48) |
| times#(times(S,x),ext) | → | times#(S,ext) | (114) |
| times#(times(0(x),y),ext) | → | times#(0(times(x,y)),ext) | (115) |
| plus#(0(x),1(y)) | → | plus#(x,y) | (51) |
| plus#(0(x),0(y)) | → | plus#(x,y) | (50) |
| plus#(0(x),j(y)) | → | plus#(x,y) | (52) |
| plus#(1(x),1(y)) | → | plus#(1(S),plus(x,y)) | (53) |
| plus#(1(x),1(y)) | → | plus#(x,y) | (54) |
| plus#(j(x),j(y)) | → | plus#(j(S),plus(x,y)) | (55) |
| plus#(j(x),j(y)) | → | plus#(x,y) | (56) |
| plus#(1(x),j(y)) | → | plus#(x,y) | (58) |
| plus#(plus(S,x),ext) | → | plus#(x,ext) | (97) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(0(plus(x,y)),ext) | (98) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(x,y) | (100) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(1(plus(x,y)),ext) | (101) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(x,y) | (102) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(j(plus(x,y)),ext) | (103) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(x,y) | (104) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(j(plus(1(S),plus(x,y))),ext) | (105) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(1(S),plus(x,y)) | (106) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(x,y) | (107) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(1(plus(j(S),plus(x,y))),ext) | (108) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(j(S),plus(x,y)) | (109) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(x,y) | (110) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(0(plus(x,y)),ext) | (111) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(x,y) | (113) |
| plus#(plus(x,y),z) | → | plus#(y,z) | (47) |
| plus#(x,y) | → | plus#(y,x) | (43) |
| plus#(plus(x,y),z) | → | plus#(x,plus(y,z)) | (45) |
| [plus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [j(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [0(x1)] | = | 1 · x1 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(S,x) | → | x | (2) |
| 0(S) | → | S | (1) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [j(x1)] | = | 1 + 1 · x1 |
| [1(x1)] | = | 1 + 1 · x1 |
| [S] | = | 0 |
| [0(x1)] | = | 1 + 1 · x1 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(S,x) | → | x | (2) |
| 0(S) | → | S | (1) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(0(plus(x,y)),ext) | (98) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(x,y) | (113) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(j(S),plus(x,y)) | (109) |
| plus#(1(x),1(y)) | → | plus#(x,y) | (54) |
| plus#(0(x),1(y)) | → | plus#(x,y) | (51) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(x,y) | (102) |
| plus#(j(x),j(y)) | → | plus#(x,y) | (56) |
| plus#(plus(1(x),j(y)),ext) | → | plus#(0(plus(x,y)),ext) | (111) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(1(S),plus(x,y)) | (106) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(x,y) | (110) |
| plus#(0(x),0(y)) | → | plus#(x,y) | (50) |
| plus#(plus(0(x),0(y)),ext) | → | plus#(x,y) | (100) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(x,y) | (107) |
| plus#(plus(0(x),1(y)),ext) | → | plus#(1(plus(x,y)),ext) | (101) |
| plus#(j(x),j(y)) | → | plus#(j(S),plus(x,y)) | (55) |
| plus#(1(x),1(y)) | → | plus#(1(S),plus(x,y)) | (53) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(j(plus(x,y)),ext) | (103) |
| plus#(0(x),j(y)) | → | plus#(x,y) | (52) |
| plus#(1(x),j(y)) | → | plus#(x,y) | (58) |
| plus#(plus(0(x),j(y)),ext) | → | plus#(x,y) | (104) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| 0(S) | → | S | (1) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| [plus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [j(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [S] | = | 1 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(S,x) | → | x | (2) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| plus#(plus(S,x),ext) | → | plus#(x,ext) | (97) |
| [plus#(x1, x2)] | = | 2 · x1 + 2 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [j(x1)] | = | 1 |
| [1(x1)] | = | 2 |
| [S] | = | 0 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(S,x) | → | x | (2) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| plus#(plus(1(x),1(y)),ext) | → | plus#(j(plus(1(S),plus(x,y))),ext) | (105) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [j(x1)] | = | 0 |
| [1(x1)] | = | 1 |
| [S] | = | 0 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(S,x) | → | x | (2) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| plus#(plus(x,y),z) | → | plus#(y,z) | (47) |
| [plus#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [j(x1)] | = | 1 |
| [1(x1)] | = | 1 |
| [S] | = | 0 |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(S,x) | → | x | (2) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| plus(x,y) | → | plus(y,x) | (39) |
| plus#(plus(j(x),j(y)),ext) | → | plus#(1(plus(j(S),plus(x,y))),ext) | (108) |
| if_abs#(1(x),y,z) | → | if_abs#(x,y,1(S)) | (79) |
| if_abs#(0(x),y,z) | → | if_abs#(x,y,z) | (78) |
| if_abs#(j(x),y,z) | → | if_abs#(x,y,j(S)) | (80) |
| [if_abs#(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 2 · x1 |
| [0(x1)] | = | 3 · x1 |
| if_abs#(0(x),y,z) | → | if_abs#(x,y,z) | (78) |
| 0(S) | → | S | (1) |
| plus(S,x) | → | x | (2) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_abs#(x1, x2, x3)] | = | 3 · x1 + 1 · x2 + 2 · x3 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 3 + 2 · x1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_abs#(j(x),y,z) | → | if_abs#(x,y,j(S)) | (80) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_abs#(x1, x2, x3)] | = | 3 · x1 + 1 · x2 + 1 · x3 |
| [1(x1)] | = | 3 + 2 · x1 |
| [S] | = | 1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_abs#(1(x),y,z) | → | if_abs#(x,y,1(S)) | (79) |
| opp#(1(x)) | → | opp#(x) | (61) |
| opp#(0(x)) | → | opp#(x) | (60) |
| opp#(j(x)) | → | opp#(x) | (62) |
| [opp#(x1)] | = | 2 · x1 |
| [j(x1)] | = | 3 · x1 |
| [0(x1)] | = | 3 · x1 |
| [1(x1)] | = | 1 · x1 |
| opp#(j(x)) | → | opp#(x) | (62) |
| opp#(0(x)) | → | opp#(x) | (60) |
| opp#(1(x)) | → | opp#(x) | (61) |
| 0(S) | → | S | (1) |
| plus(S,x) | → | x | (2) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| if_sign#(1(x),y) | → | if_sign#(x,1(S)) | (75) |
| if_sign#(0(x),y) | → | if_sign#(x,y) | (74) |
| if_sign#(j(x),y) | → | if_sign#(x,j(S)) | (76) |
| [if_sign#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [0(x1)] | = | 3 · x1 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 1 · x1 |
| if_sign#(0(x),y) | → | if_sign#(x,y) | (74) |
| 0(S) | → | S | (1) |
| plus(S,x) | → | x | (2) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_sign#(x1, x2)] | = | 3 · x1 + 2 · x2 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 3 + 2 · x1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_sign#(j(x),y) | → | if_sign#(x,j(S)) | (76) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_sign#(x1, x2)] | = | 3 · x1 + 1 · x2 |
| [1(x1)] | = | 3 + 2 · x1 |
| [S] | = | 1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_sign#(1(x),y) | → | if_sign#(x,1(S)) | (75) |
| if_min#(1(x),y,z,u) | → | if_min#(x,y,z,1(S)) | (95) |
| if_min#(0(x),y,z,u) | → | if_min#(x,y,z,u) | (94) |
| if_min#(j(x),y,z,u) | → | if_min#(x,y,z,j(S)) | (96) |
| [if_min#(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 1 · x1 |
| [0(x1)] | = | 3 · x1 |
| if_min#(0(x),y,z,u) | → | if_min#(x,y,z,u) | (94) |
| 0(S) | → | S | (1) |
| plus(S,x) | → | x | (2) |
| plus(0(x),0(y)) | → | 0(plus(x,y)) | (3) |
| plus(0(x),1(y)) | → | 1(plus(x,y)) | (4) |
| plus(0(x),j(y)) | → | j(plus(x,y)) | (5) |
| plus(1(x),1(y)) | → | j(plus(1(S),plus(x,y))) | (6) |
| plus(j(x),j(y)) | → | 1(plus(j(S),plus(x,y))) | (7) |
| plus(1(x),j(y)) | → | 0(plus(x,y)) | (8) |
| opp(S) | → | S | (9) |
| opp(0(x)) | → | 0(opp(x)) | (10) |
| opp(1(x)) | → | j(opp(x)) | (11) |
| opp(j(x)) | → | 1(opp(x)) | (12) |
| minus(x,y) | → | plus(opp(y),x) | (13) |
| times(S,x) | → | S | (14) |
| times(0(x),y) | → | 0(times(x,y)) | (15) |
| times(1(x),y) | → | plus(0(times(x,y)),y) | (16) |
| times(j(x),y) | → | minus(0(times(x,y)),y) | (17) |
| sign(x) | → | if_sign(x,S) | (18) |
| if_sign(S,x) | → | x | (19) |
| if_sign(0(x),y) | → | if_sign(x,y) | (20) |
| if_sign(1(x),y) | → | if_sign(x,1(S)) | (21) |
| if_sign(j(x),y) | → | if_sign(x,j(S)) | (22) |
| abs(x) | → | if_abs(x,x,S) | (23) |
| if_abs(0(x),y,z) | → | if_abs(x,y,z) | (24) |
| if_abs(1(x),y,z) | → | if_abs(x,y,1(S)) | (25) |
| if_abs(j(x),y,z) | → | if_abs(x,y,j(S)) | (26) |
| if_abs(S,x,S) | → | S | (27) |
| if_abs(S,x,1(S)) | → | x | (28) |
| if_abs(S,x,j(S)) | → | opp(x) | (29) |
| min(x,y) | → | if_min(minus(abs(y),abs(x)),x,y,S) | (30) |
| min'(x,y) | → | if_min(minus(abs(1(y)),abs(1(x))),x,y,S) | (31) |
| min''(x,y) | → | if_min(minus(abs(j(y)),abs(j(x))),x,y,S) | (32) |
| if_min(0(x),y,z,u) | → | if_min(x,y,z,u) | (33) |
| if_min(1(x),y,z,u) | → | if_min(x,y,z,1(S)) | (34) |
| if_min(j(x),y,z,u) | → | if_min(x,y,z,j(S)) | (35) |
| if_min(S,x,y,S) | → | x | (36) |
| if_min(S,x,y,1(S)) | → | x | (37) |
| if_min(S,x,y,j(S)) | → | y | (38) |
| plus(plus(S,x),ext) | → | plus(x,ext) | (126) |
| plus(plus(0(x),0(y)),ext) | → | plus(0(plus(x,y)),ext) | (127) |
| plus(plus(0(x),1(y)),ext) | → | plus(1(plus(x,y)),ext) | (128) |
| plus(plus(0(x),j(y)),ext) | → | plus(j(plus(x,y)),ext) | (129) |
| plus(plus(1(x),1(y)),ext) | → | plus(j(plus(1(S),plus(x,y))),ext) | (130) |
| plus(plus(j(x),j(y)),ext) | → | plus(1(plus(j(S),plus(x,y))),ext) | (131) |
| plus(plus(1(x),j(y)),ext) | → | plus(0(plus(x,y)),ext) | (132) |
| times(times(S,x),ext) | → | times(S,ext) | (133) |
| times(times(0(x),y),ext) | → | times(0(times(x,y)),ext) | (134) |
| times(times(1(x),y),ext) | → | times(plus(0(times(x,y)),y),ext) | (135) |
| times(times(j(x),y),ext) | → | times(minus(0(times(x,y)),y),ext) | (136) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_min#(x1,...,x4)] | = | 3 · x1 + 1 · x2 + 1 · x3 + 2 · x4 |
| [1(x1)] | = | 1 · x1 |
| [S] | = | 0 |
| [j(x1)] | = | 3 + 2 · x1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_min#(j(x),y,z,u) | → | if_min#(x,y,z,j(S)) | (96) |
| [plus(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [times(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [if_min#(x1,...,x4)] | = | 3 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [1(x1)] | = | 3 + 2 · x1 |
| [S] | = | 1 |
| plus(x,y) | → | plus(y,x) | (39) |
| times(x,y) | → | times(y,x) | (40) |
| plus(plus(x,y),z) | → | plus(x,plus(y,z)) | (41) |
| times(times(x,y),z) | → | times(x,times(y,z)) | (42) |
| if_min#(1(x),y,z,u) | → | if_min#(x,y,z,1(S)) | (95) |