The rewrite relation of the following equational TRS is considered.
The following set of (strict) dependency pairs is constructed for the TRS.
times#(plus(x,y),z) |
→ |
times#(x,z) |
(10) |
times#(plus(x,y),z) |
→ |
times#(y,z) |
(11) |
times#(z,plus(x,f(y))) |
→ |
times#(g(z,y),plus(x,a)) |
(12) |
times#(times(plus(x,y),z),ext) |
→ |
times#(plus(times(x,z),times(y,z)),ext) |
(13) |
times#(times(plus(x,y),z),ext) |
→ |
times#(x,z) |
(14) |
times#(times(plus(x,y),z),ext) |
→ |
times#(y,z) |
(15) |
times#(times(z,plus(x,f(y))),ext) |
→ |
times#(times(g(z,y),plus(x,a)),ext) |
(16) |
times#(times(z,plus(x,f(y))),ext) |
→ |
times#(g(z,y),plus(x,a)) |
(17) |
The extended rules of the TRS
times(times(plus(x,y),z),ext) |
→ |
times(plus(times(x,z),times(y,z)),ext) |
(18) |
times(times(z,plus(x,f(y))),ext) |
→ |
times(times(g(z,y),plus(x,a)),ext) |
(19) |
give rise to even more dependency pairs (by sharping the root symbols of each rule).
Finiteness for all DPs in combination with the equational DPs is proven as follows.
times(z,plus(x,f(y))) |
→ |
times(g(z,y),plus(x,a)) |
(2) |
times(times(plus(x,y),z),ext) |
→ |
times(plus(times(x,z),times(y,z)),ext) |
(18) |
times(times(z,plus(x,f(y))),ext) |
→ |
times(times(g(z,y),plus(x,a)),ext) |
(19) |
times(plus(x,y),z) |
→ |
plus(times(x,z),times(y,z)) |
(1) |
times(x,y) |
→ |
times(y,x) |
(4) |
times(times(x,y),z) |
→ |
times(x,times(y,z)) |
(6) |
plus(plus(x,y),z) |
→ |
plus(x,plus(y,z)) |
(5) |
plus(x,y) |
→ |
plus(y,x) |
(3) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
times#(plus(x,y),z) |
→ |
times#(x,z) |
(10) |
times#(plus(x,y),z) |
→ |
times#(y,z) |
(11) |
times#(z,plus(x,f(y))) |
→ |
times#(g(z,y),plus(x,a)) |
(12) |
times#(times(plus(x,y),z),ext) |
→ |
times#(x,z) |
(14) |
times#(times(plus(x,y),z),ext) |
→ |
times#(y,z) |
(15) |
times#(times(z,plus(x,f(y))),ext) |
→ |
times#(times(g(z,y),plus(x,a)),ext) |
(16) |
times#(times(z,plus(x,f(y))),ext) |
→ |
times#(g(z,y),plus(x,a)) |
(17) |
could be deleted.
times(z,plus(x,f(y))) |
→ |
times(g(z,y),plus(x,a)) |
(2) |
times(times(plus(x,y),z),ext) |
→ |
times(plus(times(x,z),times(y,z)),ext) |
(18) |
times(times(z,plus(x,f(y))),ext) |
→ |
times(times(g(z,y),plus(x,a)),ext) |
(19) |
times(plus(x,y),z) |
→ |
plus(times(x,z),times(y,z)) |
(1) |
plus(plus(x,y),z) |
→ |
plus(x,plus(y,z)) |
(5) |
plus(x,y) |
→ |
plus(y,x) |
(3) |
times(x,y) |
→ |
times(y,x) |
(4) |
times(times(x,y),z) |
→ |
times(x,times(y,z)) |
(6) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs