Certification Problem

Input (TPDB TRS_Equational/Mixed_AC/YWHM14_3)

The rewrite relation of the following equational TRS is considered.

f(plus(x,y)) plus(f(x),y) (1)
plus(g(x),y) g(plus(x,y)) (2)
plus(f(a),g(b)) plus(f(b),g(a)) (3)
h(a,b) h(b,a) (4)
h(a,g(g(a))) h(g(a),f(a)) (5)
h(g(a),a) h(a,g(b)) (6)
h(g(a),b) h(a,g(a)) (7)

Associative symbols: plus

Commutative symbols: plus

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 2 + 2 · x2 + 2 · x1 + 1 · x1 · x2
[f(x1)] = 2 + 3 · x1
[g(x1)] = 3 + 1 · x1
[a] = 0
[b] = 0
[h(x1, x2)] = 1 · x2 + 1 · x1
the rules
f(plus(x,y)) plus(f(x),y) (1)
plus(g(x),y) g(plus(x,y)) (2)
h(a,g(g(a))) h(g(a),f(a)) (5)
can be deleted.

1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 3 + 1 · x2 + 1 · x1
[f(x1)] = 2 · x1
[a] = 2
[g(x1)] = 1 · x1 · x1
[b] = 0
[h(x1, x2)] = 1 · x2 + 2 · x1
the rules
h(a,b) h(b,a) (4)
h(g(a),a) h(a,g(b)) (6)
can be deleted.

1.1.1 AC Rule Removal

Using the linear polynomial interpretation over the naturals
[plus(x1, x2)] = 3 + 1 · x2 + 1 · x1
[f(x1)] = 3 · x1
[a] = 2
[g(x1)] = 2 · x1
[b] = 0
[h(x1, x2)] = 1 · x2 + 2 · x1
the rule
plus(f(a),g(b)) plus(f(b),g(a)) (3)
can be deleted.

1.1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[plus(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[h(x1, x2)] = 1 · x2 + 2 · x1
[g(x1)] = 1 · x1 · x1
[a] = 0
[b] = 1
the rule
h(g(a),b) h(a,g(a)) (7)
can be deleted.

1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is AC-terminating.