Certification Problem

Input (TPDB TRS_Equational/Mixed_AC/bag-sum-prod)

The rewrite relation of the following equational TRS is considered.

+(0,x) x (1)
+(s(x),s(y)) s(s(+(x,y))) (2)
*(0,x) 0 (3)
*(s(x),s(y)) s(+(+(x,y),*(x,y))) (4)
U(empty,b) b (5)
sum(empty) 0 (6)
sum(singl(x)) x (7)
sum(U(x,y)) +(sum(x),sum(y)) (8)
prod(empty) s(0) (9)
prod(singl(x)) x (10)
prod(U(x,y)) *(prod(x),prod(y)) (11)

Associative symbols: *, +, U

Commutative symbols: *, +, U

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[*(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[+(x1, x2)] = 1 · x2 + 1 · x1
[U(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[0] = 2
[s(x1)] = 1 + 1 · x1
[empty] = 2
[sum(x1)] = 2 · x1 · x1
[singl(x1)] = 2 + 1 · x1 + 3 · x1 · x1
[prod(x1)] = 1 · x1 · x1
the rules
+(0,x) x (1)
*(s(x),s(y)) s(+(+(x,y),*(x,y))) (4)
U(empty,b) b (5)
sum(empty) 0 (6)
sum(singl(x)) x (7)
prod(empty) s(0) (9)
prod(singl(x)) x (10)
can be deleted.

1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[*(x1, x2)] = 1 · x2 + 1 · x1
[+(x1, x2)] = 2 + 2 · x2 + 2 · x1 + 1 · x1 · x2
[U(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[s(x1)] = 3 + 1 · x1
[0] = 0
[sum(x1)] = 2 · x1 + 3 · x1 · x1
[prod(x1)] = 2 · x1 + 2 · x1 · x1
the rules
+(s(x),s(y)) s(s(+(x,y))) (2)
sum(U(x,y)) +(sum(x),sum(y)) (8)
prod(U(x,y)) *(prod(x),prod(y)) (11)
can be deleted.

1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[*(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[+(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[U(x1, x2)] = 2 + 3 · x2 + 3 · x1 + 3 · x1 · x2
[0] = 2
the rule
*(0,x) 0 (3)
can be deleted.

1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is AC-terminating.