The rewrite relation of the following equational TRS is considered.
f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
f(g(h(a)),f(b,f(b,b))) | → | f(g(f(h(a),a)),a) | (3) |
f(h(a),a) | → | f(h(a),b) | (4) |
Associative symbols: f
Commutative symbols: f
The following set of (strict) dependency pairs is constructed for the TRS.
f#(g(h(a)),f(b,f(b,b))) | → | f#(h(a),a) | (10) |
f#(h(a),a) | → | f#(h(a),b) | (11) |
f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (12) |
f#(g(h(a)),f(b,f(b,b))) | → | f#(g(f(h(a),a)),a) | (13) |
f#(h(a),g(a)) | → | f#(g(h(a)),a) | (14) |
f#(g(f(h(a),a)),a) | → | f#(a,a) | (15) |
The dependency pairs are split into 1 component.
f#(x,f(y,z)) | → | f#(x,y) | (9) |
f#(g(f(h(a),a)),a) | → | f#(a,a) | (15) |
f#(h(a),g(a)) | → | f#(g(h(a)),a) | (14) |
f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
f#(h(a),a) | → | f#(h(a),b) | (11) |
f#(g(h(a)),f(b,f(b,b))) | → | f#(h(a),a) | (10) |
f#(g(h(a)),f(b,f(b,b))) | → | f#(g(f(h(a),a)),a) | (13) |
f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (12) |
f#(x,y) | → | f#(y,x) | (7) |
[h(x1)] | = | 11799 |
[a] | = | 1 |
[b] | = | 0 |
[f(x1, x2)] | = | x1 + x2 + 1 |
[f#(x1, x2)] | = | x1 + x2 + 0 |
[g(x1)] | = | 11802 |
f(h(a),a) | → | f(h(a),b) | (4) |
f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
f(g(h(a)),f(b,f(b,b))) | → | f(g(f(h(a),a)),a) | (3) |
f(x,f(y,z)) | → | f(f(x,y),z) | (6) |
f(x,y) | → | f(y,x) | (5) |
f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (12) |
f#(g(h(a)),f(b,f(b,b))) | → | f#(g(f(h(a),a)),a) | (13) |
f#(g(h(a)),f(b,f(b,b))) | → | f#(h(a),a) | (10) |
f#(h(a),a) | → | f#(h(a),b) | (11) |
f#(h(a),g(a)) | → | f#(g(h(a)),a) | (14) |
f#(g(f(h(a),a)),a) | → | f#(a,a) | (15) |
f#(x,f(y,z)) | → | f#(x,y) | (9) |
The dependency pairs are split into 1 component.
f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
f#(x,y) | → | f#(y,x) | (7) |
The extended rules of the TRS
f(f(h(a),g(a)),_1) | → | f(f(g(h(a)),a),_1) | (16) |
f(f(g(h(a)),f(b,f(b,b))),_1) | → | f(f(g(f(h(a),a)),a),_1) | (17) |
f(f(g(f(h(a),a)),a),_1) | → | f(f(h(a),f(a,a)),_1) | (18) |
f(f(h(a),a),_1) | → | f(f(h(a),b),_1) | (19) |
The dependency pairs are split into 1 component.
f#(f(g(h(a)),f(b,f(b,b))),_1) | → | f#(f(g(f(h(a),a)),a),_1) | (20) |
f#(f(g(f(h(a),a)),a),_1) | → | f#(f(h(a),f(a,a)),_1) | (21) |
f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
f#(f(h(a),a),_1) | → | f#(f(h(a),b),_1) | (22) |
f#(x,y) | → | f#(y,x) | (7) |
f#(x,f(y,z)) | → | f#(x,y) | (9) |
f#(f(h(a),g(a)),_1) | → | f#(f(g(h(a)),a),_1) | (23) |
[h(x1)] | = | 2 |
[a] | = | 1 |
[b] | = | 0 |
[f(x1, x2)] | = | x1 + x2 + 8366 |
[f#(x1, x2)] | = | x1 + x2 + 0 |
[g(x1)] | = | 8370 |
f(h(a),a) | → | f(h(a),b) | (4) |
f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
f(g(h(a)),f(b,f(b,b))) | → | f(g(f(h(a),a)),a) | (3) |
f(x,f(y,z)) | → | f(f(x,y),z) | (6) |
f(x,y) | → | f(y,x) | (5) |
f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
f#(f(h(a),g(a)),_1) | → | f#(f(g(h(a)),a),_1) | (23) |
f#(x,f(y,z)) | → | f#(x,y) | (9) |
f#(f(h(a),a),_1) | → | f#(f(h(a),b),_1) | (22) |
f#(f(g(f(h(a),a)),a),_1) | → | f#(f(h(a),f(a,a)),_1) | (21) |
f#(f(g(h(a)),f(b,f(b,b))),_1) | → | f#(f(g(f(h(a),a)),a),_1) | (20) |
The dependency pairs are split into 1 component.
f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
f#(x,y) | → | f#(y,x) | (7) |