The rewrite relation of the following equational TRS is considered.
| f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
| f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
| f(g(h(a)),f(f(a,a),a)) | → | f(g(f(h(a),a)),a) | (3) |
| f(h(a),a) | → | f(h(a),b) | (4) |
| f(i(x,y),f(a,y)) | → | f(g(i(x,y)),y) | (5) |
Associative symbols: f
Commutative symbols: f
The following set of (strict) dependency pairs is constructed for the TRS.
| f#(g(h(a)),f(f(a,a),a)) | → | f#(g(f(h(a),a)),a) | (11) |
| f#(g(f(h(a),a)),a) | → | f#(a,a) | (12) |
| f#(g(h(a)),f(f(a,a),a)) | → | f#(h(a),a) | (13) |
| f#(h(a),a) | → | f#(h(a),b) | (14) |
| f#(i(x,y),f(a,y)) | → | f#(g(i(x,y)),y) | (15) |
| f#(h(a),g(a)) | → | f#(g(h(a)),a) | (16) |
| f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (17) |
The dependency pairs are split into 1 component.
| f#(x,y) | → | f#(y,x) | (10) |
| f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (17) |
| f#(h(a),g(a)) | → | f#(g(h(a)),a) | (16) |
| f#(x,f(y,z)) | → | f#(x,y) | (9) |
| f#(g(f(h(a),a)),a) | → | f#(a,a) | (12) |
| f#(g(h(a)),f(f(a,a),a)) | → | f#(g(f(h(a),a)),a) | (11) |
| f#(i(x,y),f(a,y)) | → | f#(g(i(x,y)),y) | (15) |
| f#(h(a),a) | → | f#(h(a),b) | (14) |
| f#(g(h(a)),f(f(a,a),a)) | → | f#(h(a),a) | (13) |
| f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
| [h(x1)] | = | x1 + 1 |
| [a] | = | 30613 |
| [b] | = | 30612 |
| [f(x1, x2)] | = | x1 + x2 + 1 |
| [f#(x1, x2)] | = | x1 + x2 + 0 |
| [i(x1, x2)] | = | 30616 |
| [g(x1)] | = | 61229 |
| f(h(a),a) | → | f(h(a),b) | (4) |
| f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
| f(g(h(a)),f(f(a,a),a)) | → | f(g(f(h(a),a)),a) | (3) |
| f(i(x,y),f(a,y)) | → | f(g(i(x,y)),y) | (5) |
| f(x,y) | → | f(y,x) | (7) |
| f(x,f(y,z)) | → | f(f(x,y),z) | (6) |
| f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
| f#(g(h(a)),f(f(a,a),a)) | → | f#(h(a),a) | (13) |
| f#(h(a),a) | → | f#(h(a),b) | (14) |
| f#(i(x,y),f(a,y)) | → | f#(g(i(x,y)),y) | (15) |
| f#(g(h(a)),f(f(a,a),a)) | → | f#(g(f(h(a),a)),a) | (11) |
| f#(g(f(h(a),a)),a) | → | f#(a,a) | (12) |
| f#(x,f(y,z)) | → | f#(x,y) | (9) |
| f#(h(a),g(a)) | → | f#(g(h(a)),a) | (16) |
| f#(g(f(h(a),a)),a) | → | f#(h(a),f(a,a)) | (17) |
The dependency pairs are split into 1 component.
| f#(x,y) | → | f#(y,x) | (10) |
| f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
The extended rules of the TRS
| f(f(h(a),g(a)),_1) | → | f(f(g(h(a)),a),_1) | (18) |
| f(f(i(x,y),f(a,y)),_1) | → | f(f(g(i(x,y)),y),_1) | (19) |
| f(f(g(h(a)),f(f(a,a),a)),_1) | → | f(f(g(f(h(a),a)),a),_1) | (20) |
| f(f(g(f(h(a),a)),a),_1) | → | f(f(h(a),f(a,a)),_1) | (21) |
| f(f(h(a),a),_1) | → | f(f(h(a),b),_1) | (22) |
The dependency pairs are split into 1 component.
| f#(f(h(a),a),_1) | → | f#(f(h(a),b),_1) | (23) |
| f#(x,y) | → | f#(y,x) | (10) |
| f#(f(i(x,y),f(a,y)),_1) | → | f#(f(g(i(x,y)),y),_1) | (24) |
| f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |
| f#(f(g(h(a)),f(f(a,a),a)),_1) | → | f#(f(g(f(h(a),a)),a),_1) | (25) |
| f#(f(h(a),g(a)),_1) | → | f#(f(g(h(a)),a),_1) | (26) |
| f#(x,f(y,z)) | → | f#(x,y) | (9) |
| f#(f(g(f(h(a),a)),a),_1) | → | f#(f(h(a),f(a,a)),_1) | (27) |
| [h(x1)] | = | x1 + 1 |
| [a] | = | 1 |
| [b] | = | 0 |
| [f(x1, x2)] | = | x1 + x2 + 282 |
| [f#(x1, x2)] | = | x1 + x2 + 0 |
| [i(x1, x2)] | = | 4 |
| [g(x1)] | = | 286 |
| f(h(a),a) | → | f(h(a),b) | (4) |
| f(g(f(h(a),a)),a) | → | f(h(a),f(a,a)) | (1) |
| f(g(h(a)),f(f(a,a),a)) | → | f(g(f(h(a),a)),a) | (3) |
| f(i(x,y),f(a,y)) | → | f(g(i(x,y)),y) | (5) |
| f(x,y) | → | f(y,x) | (7) |
| f(x,f(y,z)) | → | f(f(x,y),z) | (6) |
| f(h(a),g(a)) | → | f(g(h(a)),a) | (2) |
| f#(f(g(f(h(a),a)),a),_1) | → | f#(f(h(a),f(a,a)),_1) | (27) |
| f#(x,f(y,z)) | → | f#(x,y) | (9) |
| f#(f(h(a),g(a)),_1) | → | f#(f(g(h(a)),a),_1) | (26) |
| f#(f(g(h(a)),f(f(a,a),a)),_1) | → | f#(f(g(f(h(a),a)),a),_1) | (25) |
| f#(f(i(x,y),f(a,y)),_1) | → | f#(f(g(i(x,y)),y),_1) | (24) |
| f#(f(h(a),a),_1) | → | f#(f(h(a),b),_1) | (23) |
The dependency pairs are split into 1 component.
| f#(x,y) | → | f#(y,x) | (10) |
| f#(x,f(y,z)) | → | f#(f(x,y),z) | (8) |