The rewrite relation of the following equational TRS is considered.
| app(nil,k) | → | k | (1) |
| app(l,nil) | → | l | (2) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| plus(0,y) | → | y | (8) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
Associative symbols: plus
Commutative symbols: plus
The following set of (strict) dependency pairs is constructed for the TRS.
| sum#(app(l,cons(x,cons(y,k)))) | → | app#(l,sum(cons(x,cons(y,k)))) | (16) |
| sum#(cons(0,cons(plus(x,y),l))) | → | sum#(cons(s(x),cons(y,l))) | (17) |
| sum#(cons(x,cons(y,l))) | → | plus#(x,y) | (18) |
| app#(cons(x,l),k) | → | app#(l,k) | (19) |
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (20) |
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(cons(x,cons(y,k))) | (21) |
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) |
| sum#(cons(0,cons(plus(x,y),l))) | → | pred#(sum(cons(s(x),cons(y,l)))) | (23) |
| plus#(s(x),y) | → | plus#(x,y) | (24) |
The dependency pairs are split into 4 components.
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) |
| [s(x1)] | = | 2 |
| [plus#(x1, x2)] | = | 0 |
| [pred(x1)] | = | x1 + 0 |
| [sum(x1)] | = | 8858 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [app#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x2 + 8857 |
| [sum#(x1)] | = | x1 + 0 |
| [app(x1, x2)] | = | x1 + x2 + 23676 |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| app(nil,k) | → | k | (1) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| app(l,nil) | → | l | (2) |
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) |
The dependency pairs are split into 0 components.
| sum#(cons(0,cons(plus(x,y),l))) | → | sum#(cons(s(x),cons(y,l))) | (17) |
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (20) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | 0 |
| [pred(x1)] | = | x1 + 0 |
| [sum(x1)] | = | x1 + 0 |
| [0] | = | 6996 |
| [nil] | = | 48638 |
| [app#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 283 |
| [sum#(x1)] | = | x1 + 0 |
| [app(x1, x2)] | = | x1 + x2 + 1 |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| plus(0,y) | → | y | (8) |
| app(nil,k) | → | k | (1) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| plus(x,y) | → | plus(y,x) | (12) |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (11) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| app(l,nil) | → | l | (2) |
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (20) |
| sum#(cons(0,cons(plus(x,y),l))) | → | sum#(cons(s(x),cons(y,l))) | (17) |
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(x,y) | (24) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (13) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (15) |
| plus#(x,y) | → | plus#(y,x) | (14) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [pred(x1)] | = | x1 + 0 |
| [sum(x1)] | = | x1 + 0 |
| [0] | = | 6996 |
| [nil] | = | 1 |
| [app#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 1 |
| [sum#(x1)] | = | x1 + 0 |
| [app(x1, x2)] | = | x1 + x2 + 1 |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| plus(0,y) | → | y | (8) |
| app(nil,k) | → | k | (1) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| plus(x,y) | → | plus(y,x) | (12) |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (11) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| app(l,nil) | → | l | (2) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (13) |
| plus#(s(x),y) | → | plus#(x,y) | (24) |
The dependency pairs are split into 1 component.
| plus#(x,y) | → | plus#(y,x) | (14) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (15) |
| app#(cons(x,l),k) | → | app#(l,k) | (19) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [pred(x1)] | = | x1 + 0 |
| [sum(x1)] | = | x1 + 0 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [app#(x1, x2)] | = | x1 + 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 1 |
| [sum#(x1)] | = | x1 + 0 |
| [app(x1, x2)] | = | x1 + x2 + 47562 |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| plus(0,y) | → | y | (8) |
| app(nil,k) | → | k | (1) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| plus(x,y) | → | plus(y,x) | (12) |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (11) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| app(l,nil) | → | l | (2) |
| app#(cons(x,l),k) | → | app#(l,k) | (19) |
The dependency pairs are split into 0 components.
The extended rules of the TRS
| plus(plus(s(x),y),_1) | → | plus(s(plus(x,y)),_1) | (25) |
| plus(plus(0,y),_1) | → | plus(y,_1) | (26) |
The dependency pairs are split into 1 component.
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (15) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (13) |
| plus#(x,y) | → | plus#(y,x) | (14) |
| plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (27) |
| plus#(plus(0,y),_1) | → | plus#(y,_1) | (28) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [pred(x1)] | = | x1 + 0 |
| [sum(x1)] | = | x1 + 0 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [app#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 1 |
| [sum#(x1)] | = | x1 + 0 |
| [app(x1, x2)] | = | x1 + x2 + 31122 |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| plus(0,y) | → | y | (8) |
| app(nil,k) | → | k | (1) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
| pred(cons(s(x),nil)) | → | cons(x,nil) | (10) |
| sum(cons(0,cons(plus(x,y),l))) | → | pred(sum(cons(s(x),cons(y,l)))) | (7) |
| plus(x,y) | → | plus(y,x) | (12) |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (11) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
| app(l,nil) | → | l | (2) |
| plus#(plus(0,y),_1) | → | plus#(y,_1) | (28) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (13) |
The dependency pairs are split into 1 component.
| plus#(x,y) | → | plus#(y,x) | (14) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (15) |
| plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (27) |
| [s(x1)] | = | 1 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [pred(x1)] | = | 0 |
| [sum(x1)] | = | 2 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [app#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| [pred#(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 1 |
| [sum#(x1)] | = | 0 |
| [app(x1, x2)] | = | x1 + 1 |
| plus(0,y) | → | y | (8) |
| plus(x,y) | → | plus(y,x) | (12) |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (11) |
| plus(s(x),y) | → | s(plus(x,y)) | (9) |
| plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (27) |
The dependency pairs are split into 1 component.
| plus#(x,y) | → | plus#(y,x) | (14) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (15) |