The rewrite relation of the following equational TRS is considered.
| plus(0,y) | → | y | (1) |
| plus(s(x),0) | → | s(x) | (2) |
| plus(s(x),s(y)) | → | s(plus(s(x),plus(y,0))) | (3) |
Associative symbols: plus
Commutative symbols: plus
The following set of (strict) dependency pairs is constructed for the TRS.
| plus#(s(x),s(y)) | → | plus#(s(x),plus(y,0)) | (9) |
| plus#(s(x),s(y)) | → | plus#(y,0) | (10) |
The dependency pairs are split into 1 component.
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (8) |
| plus#(x,y) | → | plus#(y,x) | (7) |
| plus#(s(x),s(y)) | → | plus#(y,0) | (10) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (6) |
| plus#(s(x),s(y)) | → | plus#(s(x),plus(y,0)) | (9) |
| [s(x1)] | = | x1 + 7720 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [0] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 0 |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (5) |
| plus(0,y) | → | y | (1) |
| plus(s(x),s(y)) | → | s(plus(s(x),plus(y,0))) | (3) |
| plus(x,y) | → | plus(y,x) | (4) |
| plus(s(x),0) | → | s(x) | (2) |
| plus#(s(x),s(y)) | → | plus#(s(x),plus(y,0)) | (9) |
| plus#(s(x),s(y)) | → | plus#(y,0) | (10) |
The dependency pairs are split into 1 component.
| plus#(x,plus(y,z)) | → | plus#(x,y) | (6) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (8) |
| plus#(x,y) | → | plus#(y,x) | (7) |
The extended rules of the TRS
| plus(plus(s(x),0),_1) | → | plus(s(x),_1) | (11) |
| plus(plus(s(x),s(y)),_1) | → | plus(s(plus(s(x),plus(y,0))),_1) | (12) |
| plus(plus(0,y),_1) | → | plus(y,_1) | (13) |
The dependency pairs are split into 1 component.
| plus#(plus(s(x),s(y)),_1) | → | plus#(s(plus(s(x),plus(y,0))),_1) | (14) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (6) |
| plus#(plus(0,y),_1) | → | plus#(y,_1) | (15) |
| plus#(plus(s(x),0),_1) | → | plus#(s(x),_1) | (16) |
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (8) |
| plus#(x,y) | → | plus#(y,x) | (7) |
| [s(x1)] | = | 23676 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [0] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 1 |
| plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (5) |
| plus(0,y) | → | y | (1) |
| plus(s(x),s(y)) | → | s(plus(s(x),plus(y,0))) | (3) |
| plus(x,y) | → | plus(y,x) | (4) |
| plus(s(x),0) | → | s(x) | (2) |
| plus#(plus(s(x),0),_1) | → | plus#(s(x),_1) | (16) |
| plus#(plus(0,y),_1) | → | plus#(y,_1) | (15) |
| plus#(x,plus(y,z)) | → | plus#(x,y) | (6) |
| plus#(plus(s(x),s(y)),_1) | → | plus#(s(plus(s(x),plus(y,0))),_1) | (14) |
The dependency pairs are split into 1 component.
| plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (8) |
| plus#(x,y) | → | plus#(y,x) | (7) |