The rewrite relation of the following equational TRS is considered.
| p(s(x)) | → | x | (1) |
| fac(0) | → | s(0) | (2) |
| fac(s(x)) | → | times(s(x),fac(p(s(x)))) | (3) |
Associative symbols: times
Commutative symbols: times
The following set of (strict) dependency pairs is constructed for the TRS.
| fac#(s(x)) | → | p#(s(x)) | (6) |
| fac#(s(x)) | → | fac#(p(s(x))) | (7) |
The dependency pairs are split into 1 component.
| fac#(s(x)) | → | fac#(p(s(x))) | (7) |
| π(fac#) | = | 1 |
| prec(s) | = | 1 | status(s) | = | [1] | list-extension(s) | = | Lex | ||
| prec(p#) | = | 0 | status(p#) | = | [] | list-extension(p#) | = | Lex | ||
| prec(p) | = | 0 | status(p) | = | [] | list-extension(p) | = | Lex | ||
| prec(0) | = | 0 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(times) | = | 0 | status(times) | = | [] | list-extension(times) | = | Lex | ||
| prec(fac) | = | 0 | status(fac) | = | [] | list-extension(fac) | = | Lex |
| [s(x1)] | = | x1 + 7720 |
| [p#(x1)] | = | 1 |
| [p(x1)] | = | x1 + 0 |
| [0] | = | 0 |
| [times(x1, x2)] | = | 0 |
| [fac(x1)] | = | 1 |
| p(s(x)) | → | x | (1) |
| fac#(s(x)) | → | fac#(p(s(x))) | (7) |
The dependency pairs are split into 0 components.