The rewrite relation of the following equational TRS is considered.
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
quot(0,s(y)) | → | 0 | (4) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (5) |
plus(0,y) | → | y | (6) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
app(nil,k) | → | k | (8) |
app(l,nil) | → | l | (9) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
Associative symbols: plus
Commutative symbols: plus
The following set of (strict) dependency pairs is constructed for the TRS.
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (19) |
sum#(cons(x,cons(y,l))) | → | plus#(x,y) | (20) |
minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (21) |
plus#(s(x),y) | → | plus#(x,y) | (22) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (23) |
quot#(s(x),s(y)) | → | minus#(x,y) | (24) |
minus#(minus(x,y),z) | → | plus#(y,z) | (25) |
app#(cons(x,l),k) | → | app#(l,k) | (26) |
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (27) |
sum#(app(l,cons(x,cons(y,k)))) | → | app#(l,sum(cons(x,cons(y,k)))) | (28) |
minus#(s(x),s(y)) | → | minus#(x,y) | (29) |
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(cons(x,cons(y,k))) | (30) |
The dependency pairs are split into 6 components.
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (23) |
[s(x1)] | = | x1 + 2 |
[minus(x1, x2)] | = | x1 + 1 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[0] | = | 14235 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 0 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 8856 |
[cons(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | 0 |
[app(x1, x2)] | = | 0 |
plus(x,y) | → | plus(y,x) | (15) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (23) |
The dependency pairs are split into 0 components.
minus#(s(x),s(y)) | → | minus#(x,y) | (29) |
minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (21) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[0] | = | 33954 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 0 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | x1 + 0 |
[plus(x1, x2)] | = | x1 + x2 + 0 |
[cons(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | 0 |
[app(x1, x2)] | = | 0 |
plus(x,y) | → | plus(y,x) | (15) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (21) |
minus#(s(x),s(y)) | → | minus#(x,y) | (29) |
The dependency pairs are split into 0 components.
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (19) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 3 |
[0] | = | 29283 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 1 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 2 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (19) |
The dependency pairs are split into 0 components.
app#(cons(x,l),k) | → | app#(l,k) | (26) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 2 |
[0] | = | 1 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 1 |
[app#(x1, x2)] | = | x1 + 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 1 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 35657 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
app#(cons(x,l),k) | → | app#(l,k) | (26) |
The dependency pairs are split into 0 components.
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (27) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 2 |
[0] | = | 1 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 1 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 1 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (27) |
The dependency pairs are split into 0 components.
plus#(x,y) | → | plus#(y,x) | (18) |
plus#(x,plus(y,z)) | → | plus#(x,y) | (17) |
plus#(s(x),y) | → | plus#(x,y) | (22) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (16) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[sum(x1)] | = | 31747 |
[0] | = | 54788 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 20698 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 11049 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
plus#(s(x),y) | → | plus#(x,y) | (22) |
plus#(x,plus(y,z)) | → | plus#(x,y) | (17) |
The dependency pairs are split into 1 component.
plus#(x,y) | → | plus#(y,x) | (18) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (16) |
The extended rules of the TRS
plus(plus(0,y),_1) | → | plus(y,_1) | (31) |
plus(plus(s(x),y),_1) | → | plus(s(plus(x,y)),_1) | (32) |
The dependency pairs are split into 1 component.
plus#(x,plus(y,z)) | → | plus#(x,y) | (17) |
plus#(plus(0,y),_1) | → | plus#(y,_1) | (33) |
plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (34) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (16) |
plus#(x,y) | → | plus#(y,x) | (18) |
[s(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 31755 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[sum(x1)] | = | 31747 |
[0] | = | 54788 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 20698 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 11049 |
[quot#(x1, x2)] | = | x1 + 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 34725 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
minus(x,0) | → | x | (1) |
minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (3) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
plus#(plus(0,y),_1) | → | plus#(y,_1) | (33) |
plus#(x,plus(y,z)) | → | plus#(x,y) | (17) |
The dependency pairs are split into 1 component.
plus#(x,y) | → | plus#(y,x) | (18) |
plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (34) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (16) |
[s(x1)] | = | 868 |
[minus(x1, x2)] | = | x2 + 31755 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[sum(x1)] | = | 71563 |
[0] | = | 54788 |
[quot(x1, x2)] | = | 0 |
[nil] | = | 31044 |
[app#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[cons(x1, x2)] | = | x2 + 40519 |
[quot#(x1, x2)] | = | 0 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 33855 |
plus(x,y) | → | plus(y,x) | (15) |
app(nil,k) | → | k | (8) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) |
plus(s(x),y) | → | s(plus(x,y)) | (7) |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (14) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) |
sum(cons(x,nil)) | → | cons(x,nil) | (11) |
app(l,nil) | → | l | (9) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) |
plus(0,y) | → | y | (6) |
plus#(plus(s(x),y),_1) | → | plus#(s(plus(x,y)),_1) | (34) |
The dependency pairs are split into 1 component.
plus#(x,y) | → | plus#(y,x) | (18) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (16) |