The rewrite relation of the following equational TRS is considered.
f(plus(x,y)) | → | plus(f(x),y) | (1) |
plus(g(x),y) | → | g(plus(x,y)) | (2) |
plus(f(a),g(b)) | → | plus(f(b),g(a)) | (3) |
h(a,b) | → | h(b,a) | (4) |
h(a,g(g(a))) | → | h(g(a),f(a)) | (5) |
h(g(a),a) | → | h(a,g(b)) | (6) |
h(g(a),b) | → | h(a,g(a)) | (7) |
Associative symbols: plus
Commutative symbols: plus
The following set of (strict) dependency pairs is constructed for the TRS.
h#(g(a),a) | → | h#(a,g(b)) | (13) |
h#(a,g(g(a))) | → | f#(a) | (14) |
h#(a,b) | → | h#(b,a) | (15) |
f#(plus(x,y)) | → | plus#(f(x),y) | (16) |
plus#(f(a),g(b)) | → | plus#(f(b),g(a)) | (17) |
f#(plus(x,y)) | → | f#(x) | (18) |
h#(a,g(g(a))) | → | h#(g(a),f(a)) | (19) |
plus#(g(x),y) | → | plus#(x,y) | (20) |
plus#(f(a),g(b)) | → | f#(b) | (21) |
h#(g(a),b) | → | h#(a,g(a)) | (22) |
The dependency pairs are split into 2 components.
f#(plus(x,y)) | → | f#(x) | (18) |
[a] | = | 0 |
[h(x1, x2)] | = | 0 |
[b] | = | 0 |
[plus#(x1, x2)] | = | 0 |
[f(x1)] | = | 0 |
[h#(x1, x2)] | = | 0 |
[f#(x1)] | = | x1 + 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[g(x1)] | = | 0 |
f#(plus(x,y)) | → | f#(x) | (18) |
The dependency pairs are split into 0 components.
plus#(x,plus(y,z)) | → | plus#(x,y) | (11) |
plus#(g(x),y) | → | plus#(x,y) | (20) |
plus#(x,y) | → | plus#(y,x) | (12) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (10) |
plus#(f(a),g(b)) | → | plus#(f(b),g(a)) | (17) |
[a] | = | 1 |
[h(x1, x2)] | = | 0 |
[b] | = | 51150 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[f(x1)] | = | x1 + 6135 |
[h#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 28101 |
[g(x1)] | = | x1 + 1143 |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (9) |
f(plus(x,y)) | → | plus(f(x),y) | (1) |
plus(f(a),g(b)) | → | plus(f(b),g(a)) | (3) |
plus(x,y) | → | plus(y,x) | (8) |
plus(g(x),y) | → | g(plus(x,y)) | (2) |
plus#(g(x),y) | → | plus#(x,y) | (20) |
plus#(x,plus(y,z)) | → | plus#(x,y) | (11) |
The dependency pairs are split into 1 component.
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (10) |
plus#(f(a),g(b)) | → | plus#(f(b),g(a)) | (17) |
plus#(x,y) | → | plus#(y,x) | (12) |
[a] | = | 1 |
[h(x1, x2)] | = | 0 |
[b] | = | 0 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[f(x1)] | = | x1 + 57798 |
[h#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 0 |
[g(x1)] | = | 40113 |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (9) |
f(plus(x,y)) | → | plus(f(x),y) | (1) |
plus(f(a),g(b)) | → | plus(f(b),g(a)) | (3) |
plus(x,y) | → | plus(y,x) | (8) |
plus(g(x),y) | → | g(plus(x,y)) | (2) |
plus#(f(a),g(b)) | → | plus#(f(b),g(a)) | (17) |
The dependency pairs are split into 1 component.
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (10) |
plus#(x,y) | → | plus#(y,x) | (12) |
The extended rules of the TRS
plus(plus(g(x),y),_1) | → | plus(g(plus(x,y)),_1) | (23) |
plus(plus(f(a),g(b)),_1) | → | plus(plus(f(b),g(a)),_1) | (24) |
The dependency pairs are split into 1 component.
plus#(x,plus(y,z)) | → | plus#(x,y) | (11) |
plus#(plus(g(x),y),_1) | → | plus#(g(plus(x,y)),_1) | (25) |
plus#(x,y) | → | plus#(y,x) | (12) |
plus#(plus(f(a),g(b)),_1) | → | plus#(plus(f(b),g(a)),_1) | (26) |
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (10) |
[a] | = | 1 |
[h(x1, x2)] | = | 0 |
[b] | = | 0 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[f(x1)] | = | x1 + 38607 |
[h#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[g(x1)] | = | 34519 |
plus(x,plus(y,z)) | → | plus(plus(x,y),z) | (9) |
f(plus(x,y)) | → | plus(f(x),y) | (1) |
plus(f(a),g(b)) | → | plus(f(b),g(a)) | (3) |
plus(x,y) | → | plus(y,x) | (8) |
plus(g(x),y) | → | g(plus(x,y)) | (2) |
plus#(plus(f(a),g(b)),_1) | → | plus#(plus(f(b),g(a)),_1) | (26) |
plus#(plus(g(x),y),_1) | → | plus#(g(plus(x,y)),_1) | (25) |
plus#(x,plus(y,z)) | → | plus#(x,y) | (11) |
The dependency pairs are split into 1 component.
plus#(x,plus(y,z)) | → | plus#(plus(x,y),z) | (10) |
plus#(x,y) | → | plus#(y,x) | (12) |