The rewrite relation of the following equational TRS is considered.
| eq(0,0) | → | true | (1) |
| eq(0,s(x)) | → | false | (2) |
| eq(s(x),0) | → | false | (3) |
| eq(s(x),s(y)) | → | eq(x,y) | (4) |
| rm(n,nil) | → | nil | (5) |
| rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
| if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
| if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
| purge(nil) | → | nil | (9) |
| purge(add(n,x)) | → | add(n,purge(rm(n,x))) | (10) |
Commutative symbols: eq
The following set of (strict) dependency pairs is constructed for the TRS.
| rm#(n,add(m,x)) | → | eq#(n,m) | (13) |
| purge#(add(n,x)) | → | rm#(n,x) | (14) |
| if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
| purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
| rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
| if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
The dependency pairs are split into 3 components.
| purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
| [if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
| [s(x1)] | = | 1 |
| [if_rm#(x1, x2, x3)] | = | 0 |
| [purge#(x1)] | = | x1 + 0 |
| [eq(x1, x2)] | = | 1 |
| [false] | = | 1 |
| [true] | = | 1 |
| [purge(x1)] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [nil] | = | 10803 |
| [add(x1, x2)] | = | x1 + x2 + 20654 |
| [rm(x1, x2)] | = | x1 + x2 + 20653 |
| [rm#(x1, x2)] | = | 0 |
| eq(s(x),s(y)) | → | eq(x,y) | (4) |
| if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
| eq(0,0) | → | true | (1) |
| eq(s(x),0) | → | false | (3) |
| rm(n,nil) | → | nil | (5) |
| if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
| eq(x,y) | → | eq(y,x) | (11) |
| rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
| eq(0,s(x)) | → | false | (2) |
| purge#(add(n,x)) | → | purge#(rm(n,x)) | (16) |
The dependency pairs are split into 0 components.
| if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
| rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
| if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
| [if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
| [s(x1)] | = | 1 |
| [if_rm#(x1, x2, x3)] | = | x1 + x2 + x3 + 0 |
| [purge#(x1)] | = | x1 + 0 |
| [eq(x1, x2)] | = | 1 |
| [false] | = | 1 |
| [true] | = | 1 |
| [purge(x1)] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [nil] | = | 33954 |
| [add(x1, x2)] | = | x2 + 3 |
| [rm(x1, x2)] | = | x1 + x2 + 20653 |
| [rm#(x1, x2)] | = | x1 + x2 + 3 |
| eq(s(x),s(y)) | → | eq(x,y) | (4) |
| if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
| eq(0,0) | → | true | (1) |
| eq(s(x),0) | → | false | (3) |
| rm(n,nil) | → | nil | (5) |
| if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
| eq(x,y) | → | eq(y,x) | (11) |
| rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
| eq(0,s(x)) | → | false | (2) |
| if_rm#(false,n,add(m,x)) | → | rm#(n,x) | (15) |
| rm#(n,add(m,x)) | → | if_rm#(eq(n,m),n,add(m,x)) | (17) |
| if_rm#(true,n,add(m,x)) | → | rm#(n,x) | (19) |
The dependency pairs are split into 0 components.
| eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
| eq#(x,y) | → | eq#(y,x) | (12) |
| [if_rm(x1, x2, x3)] | = | x1 + x2 + x3 + 20652 |
| [s(x1)] | = | x1 + 1 |
| [if_rm#(x1, x2, x3)] | = | x1 + 0 |
| [purge#(x1)] | = | x1 + 0 |
| [eq(x1, x2)] | = | 1 |
| [false] | = | 1 |
| [true] | = | 1 |
| [purge(x1)] | = | 0 |
| [eq#(x1, x2)] | = | x1 + x2 + 0 |
| [0] | = | 1 |
| [nil] | = | 33954 |
| [add(x1, x2)] | = | x2 + 3 |
| [rm(x1, x2)] | = | x1 + x2 + 20653 |
| [rm#(x1, x2)] | = | 3 |
| eq(s(x),s(y)) | → | eq(x,y) | (4) |
| if_rm(false,n,add(m,x)) | → | add(m,rm(n,x)) | (8) |
| eq(0,0) | → | true | (1) |
| eq(s(x),0) | → | false | (3) |
| rm(n,nil) | → | nil | (5) |
| if_rm(true,n,add(m,x)) | → | rm(n,x) | (7) |
| eq(x,y) | → | eq(y,x) | (11) |
| rm(n,add(m,x)) | → | if_rm(eq(n,m),n,add(m,x)) | (6) |
| eq(0,s(x)) | → | false | (2) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (18) |
The dependency pairs are split into 1 component.
| eq#(x,y) | → | eq#(y,x) | (12) |