The rewrite relation of the following TRS is considered.
| app(app(app(f,x),app(c,x)),app(c,y)) | → | app(app(app(f,y),y),app(app(app(f,y),x),y)) | (1) |
| app(app(app(f,app(s,x)),y),z) | → | app(app(app(f,x),app(s,app(c,y))),app(c,z)) | (2) |
| app(app(app(f,app(c,x)),x),y) | → | app(c,y) | (3) |
| app(app(g,x),y) | → | x | (4) |
| app(app(g,x),y) | → | y | (5) |
| app(app(map,fun),nil) | → | nil | (6) |
| app(app(map,fun),app(app(cons,x),xs)) | → | app(app(cons,app(fun,x)),app(app(map,fun),xs)) | (7) |
| app(app(filter,fun),nil) | → | nil | (8) |
| app(app(filter,fun),app(app(cons,x),xs)) | → | app(app(app(app(filter2,app(fun,x)),fun),x),xs) | (9) |
| app(app(app(app(filter2,true),fun),x),xs) | → | app(app(cons,x),app(app(filter,fun),xs)) | (10) |
| app(app(app(app(filter2,false),fun),x),xs) | → | app(app(filter,fun),xs) | (11) |
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(app(f,y),y),app(app(app(f,y),x),y)) | (12) |
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(f,y),y) | (13) |
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(f,y) | (14) |
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(app(f,y),x),y) | (15) |
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(f,y),x) | (16) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(app(app(f,x),app(s,app(c,y))),app(c,z)) | (17) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(app(f,x),app(s,app(c,y))) | (18) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(f,x) | (19) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(s,app(c,y)) | (20) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(c,y) | (21) |
| app#(app(app(f,app(s,x)),y),z) | → | app#(c,z) | (22) |
| app#(app(app(f,app(c,x)),x),y) | → | app#(c,y) | (23) |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(cons,app(fun,x)),app(app(map,fun),xs)) | (24) |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(cons,app(fun,x)) | (25) |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (26) |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (27) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(app(filter2,app(fun,x)),fun),x),xs) | (28) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(filter2,app(fun,x)),fun),x) | (29) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(filter2,app(fun,x)),fun) | (30) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(filter2,app(fun,x)) | (31) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (32) |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(cons,x),app(app(filter,fun),xs)) | (33) |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(cons,x) | (34) |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (35) |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(filter,fun) | (36) |
| app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (37) |
| app#(app(app(app(filter2,false),fun),x),xs) | → | app#(filter,fun) | (38) |
The dependency pairs are split into 3 components.
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (27) |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (26) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(app(filter2,app(fun,x)),fun),x),xs) | (28) |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (35) |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (32) |
| app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (37) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (32) |
| 1 | > | 1 | |
| 2 | > | 2 | |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (26) |
| 1 | > | 1 | |
| 2 | > | 2 | |
| app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (27) |
| 1 | ≥ | 1 | |
| 2 | > | 2 | |
| app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(app(filter2,app(fun,x)),fun),x),xs) | (28) |
| 2 | > | 2 | |
| app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (35) |
| 2 | ≥ | 2 | |
| app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (37) |
| 2 | ≥ | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(app(f,y),x),y) | (15) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| app#(app(app(f,x),app(c,x)),app(c,y)) | → | app#(app(app(f,y),x),y) | (15) |
| 2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| app#(app(app(f,app(s,x)),y),z) | → | app#(app(app(f,x),app(s,app(c,y))),app(c,z)) | (17) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
| [app#(x1, x2)] | = | 2 · x1 + 1 · x2 |
| [app(x1, x2)] | = | 2 · x1 + 1 · x2 |
| [f] | = | 0 |
| [s] | = | 2 |
| [c] | = | 0 |
| app#(app(app(f,app(s,x)),y),z) | → | app#(app(app(f,x),app(s,app(c,y))),app(c,z)) | (17) |
| app(app(app(f,x),app(c,x)),app(c,y)) | → | app(app(app(f,y),y),app(app(app(f,y),x),y)) | (1) |
| app(app(app(f,app(s,x)),y),z) | → | app(app(app(f,x),app(s,app(c,y))),app(c,z)) | (2) |
| app(app(app(f,app(c,x)),x),y) | → | app(c,y) | (3) |
| app(app(g,x),y) | → | x | (4) |
| app(app(g,x),y) | → | y | (5) |
| app(app(map,fun),nil) | → | nil | (6) |
| app(app(map,fun),app(app(cons,x),xs)) | → | app(app(cons,app(fun,x)),app(app(map,fun),xs)) | (7) |
| app(app(filter,fun),nil) | → | nil | (8) |
| app(app(filter,fun),app(app(cons,x),xs)) | → | app(app(app(app(filter2,app(fun,x)),fun),x),xs) | (9) |
| app(app(app(app(filter2,true),fun),x),xs) | → | app(app(cons,x),app(app(filter,fun),xs)) | (10) |
| app(app(app(app(filter2,false),fun),x),xs) | → | app(app(filter,fun),xs) | (11) |
There are no pairs anymore.