The rewrite relation of the following TRS is considered.
app(f,0) | → | app(f,0) | (1) |
0 | → | 1 | (2) |
app(app(map,fun),nil) | → | nil | (3) |
app(app(map,fun),app(app(cons,x),xs)) | → | app(app(cons,app(fun,x)),app(app(map,fun),xs)) | (4) |
app(app(filter,fun),nil) | → | nil | (5) |
app(app(filter,fun),app(app(cons,x),xs)) | → | app(app(app(app(filter2,app(fun,x)),fun),x),xs) | (6) |
app(app(app(app(filter2,true),fun),x),xs) | → | app(app(cons,x),app(app(filter,fun),xs)) | (7) |
app(app(app(app(filter2,false),fun),x),xs) | → | app(app(filter,fun),xs) | (8) |
app#(f,0) | → | app#(f,0) | (9) |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(cons,app(fun,x)),app(app(map,fun),xs)) | (10) |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(cons,app(fun,x)) | (11) |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (12) |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (13) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(app(filter2,app(fun,x)),fun),x),xs) | (14) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(app(filter2,app(fun,x)),fun),x) | (15) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(app(filter2,app(fun,x)),fun) | (16) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(filter2,app(fun,x)) | (17) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (18) |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(cons,x),app(app(filter,fun),xs)) | (19) |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(cons,x) | (20) |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (21) |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(filter,fun) | (22) |
app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (23) |
app#(app(app(app(filter2,false),fun),x),xs) | → | app#(filter,fun) | (24) |
The dependency pairs are split into 1 component.
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (13) |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (12) |
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (18) |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (21) |
app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (23) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
app(app(map,x0),nil) |
app(app(map,x0),app(app(cons,x1),x2)) |
app(app(filter,x0),nil) |
app(app(filter,x0),app(app(cons,x1),x2)) |
app(app(app(app(filter2,true),x0),x1),x2) |
app(app(app(app(filter2,false),x0),x1),x2) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
app#(app(filter,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (18) |
1 | > | 1 | |
2 | > | 2 | |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(fun,x) | (12) |
1 | > | 1 | |
2 | > | 2 | |
app#(app(map,fun),app(app(cons,x),xs)) | → | app#(app(map,fun),xs) | (13) |
1 | ≥ | 1 | |
2 | > | 2 | |
app#(app(app(app(filter2,true),fun),x),xs) | → | app#(app(filter,fun),xs) | (21) |
2 | ≥ | 2 | |
app#(app(app(app(filter2,false),fun),x),xs) | → | app#(app(filter,fun),xs) | (23) |
2 | ≥ | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.