The rewrite relation of the following TRS is considered.
f(a(x),y,s(z),u) | → | f(a(b),y,z,g(x,y,s(z),u)) | (1) |
g(x,y,z,u) | → | h(x,y,z,u) | (2) |
h(b,y,z,u) | → | f(y,y,z,u) | (3) |
a(b) | → | c | (4) |
f#(a(x),y,s(z),u) | → | f#(a(b),y,z,g(x,y,s(z),u)) | (5) |
f#(a(x),y,s(z),u) | → | a#(b) | (6) |
f#(a(x),y,s(z),u) | → | g#(x,y,s(z),u) | (7) |
g#(x,y,z,u) | → | h#(x,y,z,u) | (8) |
h#(b,y,z,u) | → | f#(y,y,z,u) | (9) |
The dependency pairs are split into 1 component.
f#(a(x),y,s(z),u) | → | g#(x,y,s(z),u) | (7) |
g#(x,y,z,u) | → | h#(x,y,z,u) | (8) |
h#(b,y,z,u) | → | f#(y,y,z,u) | (9) |
f#(a(x),y,s(z),u) | → | f#(a(b),y,z,g(x,y,s(z),u)) | (5) |
→ |
The dependency pairs are split into 1 component.
g#(x,y,z,u) | → | h#(x,y,z,u) | (8) |
h#(b,y,z,u) | → | f#(y,y,z,u) | (9) |
f#(a(x),y,s(z),u) | → | g#(x,y,s(z),u) | (7) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
a(b) |
f#(a(x0),a(x0),s(x2),z2) | → | g#(x0,a(x0),s(x2),z2) | (11) |
g#(z0,a(z0),s(z1),z2) | → | h#(z0,a(z0),s(z1),z2) | (12) |
The dependency pairs are split into 0 components.