Certification Problem

Input (TPDB TRS_Innermost/Mixed_innermost/thiemann26i)

The rewrite relation of the following TRS is considered.

ge(x,0) true (1)
ge(0,s(y)) false (2)
ge(s(x),s(y)) ge(x,y) (3)
minus(x,0) x (4)
minus(0,y) 0 (5)
minus(s(x),s(y)) minus(x,y) (6)
id_inc(x) x (7)
id_inc(x) s(x) (8)
quot(x,y) div(x,y,0) (9)
div(x,y,z) if(ge(y,s(0)),ge(x,y),x,y,z) (10)
if(false,b,x,y,z) div_by_zero (11)
if(true,false,x,y,z) z (12)
if(true,true,x,y,z) div(minus(x,y),y,id_inc(z)) (13)
The evaluation strategy is innermost.

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
ge#(s(x),s(y)) ge#(x,y) (14)
minus#(s(x),s(y)) minus#(x,y) (15)
quot#(x,y) div#(x,y,0) (16)
div#(x,y,z) if#(ge(y,s(0)),ge(x,y),x,y,z) (17)
div#(x,y,z) ge#(y,s(0)) (18)
div#(x,y,z) ge#(x,y) (19)
if#(true,true,x,y,z) div#(minus(x,y),y,id_inc(z)) (20)
if#(true,true,x,y,z) minus#(x,y) (21)
if#(true,true,x,y,z) id_inc#(z) (22)

1.1 Dependency Graph Processor

The dependency pairs are split into 3 components.