The relative rewrite relation R/S is considered where R is the following TRS
| top(north(old(n),e,s,w)) | → | top(east(n,e,s,w)) | (1) |
| top(north(new(n),old(e),s,w)) | → | top(east(n,old(e),s,w)) | (2) |
| top(north(new(n),e,old(s),w)) | → | top(east(n,e,old(s),w)) | (3) |
| top(north(new(n),e,s,old(w))) | → | top(east(n,e,s,old(w))) | (4) |
| top(east(n,old(e),s,w)) | → | top(south(n,e,s,w)) | (5) |
| top(east(old(n),new(e),s,w)) | → | top(south(old(n),e,s,w)) | (6) |
| top(east(n,new(e),old(s),w)) | → | top(south(n,e,old(s),w)) | (7) |
| top(east(n,new(e),s,old(w))) | → | top(south(n,e,s,old(w))) | (8) |
| top(south(n,e,old(s),w)) | → | top(west(n,e,s,w)) | (9) |
| top(south(old(n),e,new(s),w)) | → | top(west(old(n),e,s,w)) | (10) |
| top(south(n,old(e),new(s),w)) | → | top(west(n,old(e),s,w)) | (11) |
| top(south(n,e,new(s),old(w))) | → | top(west(n,e,s,old(w))) | (12) |
| top(west(n,e,s,old(w))) | → | top(north(n,e,s,w)) | (13) |
| top(west(old(n),e,s,new(w))) | → | top(north(old(n),e,s,w)) | (14) |
| top(west(n,old(e),s,new(w))) | → | top(north(n,old(e),s,w)) | (15) |
| top(west(n,e,old(s),new(w))) | → | top(north(n,e,old(s),w)) | (16) |
| top(north(bot,old(e),s,w)) | → | top(east(bot,old(e),s,w)) | (17) |
| top(north(bot,e,old(s),w)) | → | top(east(bot,e,old(s),w)) | (18) |
| top(north(bot,e,s,old(w))) | → | top(east(bot,e,s,old(w))) | (19) |
| top(east(old(n),bot,s,w)) | → | top(south(old(n),bot,s,w)) | (20) |
| top(east(n,bot,old(s),w)) | → | top(south(n,bot,old(s),w)) | (21) |
| top(east(n,bot,s,old(w))) | → | top(south(n,bot,s,old(w))) | (22) |
| top(south(old(n),e,bot,w)) | → | top(west(old(n),e,bot,w)) | (23) |
| top(south(n,old(e),bot,w)) | → | top(west(n,old(e),bot,w)) | (24) |
| top(south(n,e,bot,old(w))) | → | top(west(n,e,bot,old(w))) | (25) |
| top(west(old(n),e,s,bot)) | → | top(north(old(n),e,s,bot)) | (26) |
| top(west(n,old(e),s,bot)) | → | top(north(n,old(e),s,bot)) | (27) |
| top(west(n,e,old(s),bot)) | → | top(north(n,e,old(s),bot)) | (28) |
and S is the following TRS.
| top(south(n,e,old(s),w)) | → | top(south(n,e,s,w)) | (29) |
| top(south(n,e,new(s),w)) | → | top(south(n,e,s,w)) | (30) |
| top(west(n,e,s,old(w))) | → | top(west(n,e,s,w)) | (31) |
| top(west(n,e,s,new(w))) | → | top(west(n,e,s,w)) | (32) |
| bot | → | new(bot) | (33) |
| top(north(new(n),e,s,w)) | → | top(north(n,e,s,w)) | (34) |
| top(east(n,old(e),s,w)) | → | top(east(n,e,s,w)) | (35) |
| top(east(n,new(e),s,w)) | → | top(east(n,e,s,w)) | (36) |
| top(north(old(n),e,s,w)) | → | top(north(n,e,s,w)) | (37) |
| [top(x1)] | = | 1 · x1 |
| [north(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [old(x1)] | = | 1 + 1 · x1 |
| [east(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [new(x1)] | = | 1 · x1 |
| [south(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [west(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [bot] | = | 0 |
| top(north(old(n),e,s,w)) | → | top(east(n,e,s,w)) | (1) |
| top(east(n,old(e),s,w)) | → | top(south(n,e,s,w)) | (5) |
| top(south(n,e,old(s),w)) | → | top(west(n,e,s,w)) | (9) |
| top(west(n,e,s,old(w))) | → | top(north(n,e,s,w)) | (13) |
| top(south(n,e,old(s),w)) | → | top(south(n,e,s,w)) | (29) |
| top(west(n,e,s,old(w))) | → | top(west(n,e,s,w)) | (31) |
| top(east(n,old(e),s,w)) | → | top(east(n,e,s,w)) | (35) |
| top(north(old(n),e,s,w)) | → | top(north(n,e,s,w)) | (37) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(north(new(n),e,s,old(w))) | → | top(east(n,e,s,old(w))) | (4) |
| top(north(bot,e,s,old(w))) | → | top(east(bot,e,s,old(w))) | (19) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(east(n,new(e),s,old(w))) | → | top(south(n,e,s,old(w))) | (8) |
| top(east(n,bot,s,old(w))) | → | top(south(n,bot,s,old(w))) | (22) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(east(old(n),new(e),s,w)) | → | top(south(old(n),e,s,w)) | (6) |
| top(south(n,e,new(s),old(w))) | → | top(west(n,e,s,old(w))) | (12) |
| top(east(old(n),bot,s,w)) | → | top(south(old(n),bot,s,w)) | (20) |
| top(south(n,e,bot,old(w))) | → | top(west(n,e,bot,old(w))) | (25) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(south(n,old(e),new(s),w)) | → | top(west(n,old(e),s,w)) | (11) |
| top(south(n,old(e),bot,w)) | → | top(west(n,old(e),bot,w)) | (24) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(west(n,old(e),s,new(w))) | → | top(north(n,old(e),s,w)) | (15) |
| top(west(n,old(e),s,bot)) | → | top(north(n,old(e),s,bot)) | (27) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(north(new(n),old(e),s,w)) | → | top(east(n,old(e),s,w)) | (2) |
| top(north(bot,old(e),s,w)) | → | top(east(bot,old(e),s,w)) | (17) |
| [top(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [north(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [new(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [old(x1)] | = |
|
|||||||||||||||||||||||||||||||||
| [east(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [south(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [west(x1,...,x4)] | = |
|
|||||||||||||||||||||||||||||||||
| [bot] | = |
|
| top(south(old(n),e,new(s),w)) | → | top(west(old(n),e,s,w)) | (10) |
| top(south(old(n),e,bot,w)) | → | top(west(old(n),e,bot,w)) | (23) |
| [top(x1)] | = | 1 · x1 |
| [north(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [new(x1)] | = | 1 · x1 |
| [old(x1)] | = | 1 · x1 |
| [east(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [south(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [west(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [bot] | = | 0 |
| top(east(n,new(e),old(s),w)) | → | top(south(n,e,old(s),w)) | (7) |
| top(east(n,bot,old(s),w)) | → | top(south(n,bot,old(s),w)) | (21) |
| [top(x1)] | = | 1 · x1 |
| [north(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [new(x1)] | = | 1 · x1 |
| [old(x1)] | = | 1 · x1 |
| [east(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [west(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [bot] | = | 0 |
| [south(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| top(north(new(n),e,old(s),w)) | → | top(east(n,e,old(s),w)) | (3) |
| top(north(bot,e,old(s),w)) | → | top(east(bot,e,old(s),w)) | (18) |
| [top(x1)] | = | 1 · x1 |
| [west(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [old(x1)] | = | 1 · x1 |
| [new(x1)] | = | 1 · x1 |
| [north(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [bot] | = | 0 |
| [south(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| [east(x1,...,x4)] | = | 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 |
| top(west(old(n),e,s,new(w))) | → | top(north(old(n),e,s,w)) | (14) |
| top(west(n,e,old(s),new(w))) | → | top(north(n,e,old(s),w)) | (16) |
| top(west(old(n),e,s,bot)) | → | top(north(old(n),e,s,bot)) | (26) |
| top(west(n,e,old(s),bot)) | → | top(north(n,e,old(s),bot)) | (28) |
There are no rules in the TRS. Hence, it is terminating.