Certification Problem

Input (TPDB TRS_Relative/Relative_05/rtL-evnz)

The relative rewrite relation R/S is considered where R is the following TRS

top(ok(U(x,y))) top(check(D(x,y))) (1)
D(x,B) U(x,B) (2)
F(x,U(O(y),z)) U(x,F(y,z)) (3)
F(x,U(N(y),z)) U(x,F(y,z)) (4)
D(O(x),F(y,z)) F(x,D(y,z)) (5)
D(N(x),F(y,z)) F(x,D(y,z)) (6)
F(x,U(E,y)) U(x,F(E,y)) (7)
D(E,F(x,y)) F(E,D(x,y)) (8)

and S is the following TRS.

F(x,ok(y)) ok(F(x,y)) (9)
E N(E) (10)
F(ok(x),y) ok(F(x,y)) (11)
O(ok(x)) ok(O(x)) (12)
U(ok(x),y) ok(U(x,y)) (13)
check(U(x,y)) U(check(x),y) (14)
check(N(x)) N(check(x)) (15)
D(ok(x),y) ok(D(x,y)) (16)
U(O(x),y) U(x,y) (17)
check(D(x,y)) D(check(x),y) (18)
check(F(x,y)) F(x,check(y)) (19)
check(U(x,y)) U(x,check(y)) (20)
U(N(x),y) U(x,y) (21)
D(O(x),y) D(x,y) (22)
check(O(x)) O(check(x)) (23)
N(ok(x)) ok(N(x)) (24)
D(N(x),y) D(x,y) (25)
D(x,ok(y)) ok(D(x,y)) (26)
check(O(x)) ok(O(x)) (27)
check(F(x,y)) F(check(x),y) (28)
U(x,ok(y)) ok(U(x,y)) (29)
check(D(x,y)) D(x,check(y)) (30)

Property / Task

Prove or disprove termination.

Answer / Result

No.

Proof (by AProVE @ termCOMP 2023)

1 Loop

The following loop proves that R/S is not relative terminating.

t0 = top(check(D(O(x),B)))
S top(D(check(O(x)),B))
S top(D(ok(O(x)),B))
R top(U(ok(O(x)),B))
S top(ok(U(O(x),B)))
R top(check(D(O(x),B)))
= t5
where t5 = t0