Certification Problem

Input (TPDB TRS_Standard/AProVE_06/quot)

The rewrite relation of the following TRS is considered.

minus(x,x) 0 (1)
minus(0,x) 0 (2)
minus(x,0) x (3)
minus(s(x),s(y)) minus(x,y) (4)
le(0,y) true (5)
le(s(x),0) false (6)
le(s(x),s(y)) le(x,y) (7)
quot(x,y) if_quot(minus(x,y),y,le(y,0),le(y,x)) (8)
if_quot(x,y,true,z) divByZeroError (9)
if_quot(x,y,false,true) s(quot(x,y)) (10)
if_quot(x,y,false,false) 0 (11)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Switch to Innermost Termination

The TRS is overlay and locally confluent:

10

Hence, it suffices to show innermost termination in the following.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
minus#(s(x),s(y)) minus#(x,y) (12)
le#(s(x),s(y)) le#(x,y) (13)
quot#(x,y) if_quot#(minus(x,y),y,le(y,0),le(y,x)) (14)
quot#(x,y) minus#(x,y) (15)
quot#(x,y) le#(y,0) (16)
quot#(x,y) le#(y,x) (17)
if_quot#(x,y,false,true) quot#(x,y) (18)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 3 components.