The rewrite relation of the following TRS is considered.
active#(eq(s(X),s(Y))) |
→ |
eq#(X,Y) |
(37) |
active#(inf(X)) |
→ |
cons#(X,inf(s(X))) |
(38) |
active#(inf(X)) |
→ |
inf#(s(X)) |
(39) |
active#(inf(X)) |
→ |
s#(X) |
(40) |
active#(take(s(X),cons(Y,L))) |
→ |
cons#(Y,take(X,L)) |
(41) |
active#(take(s(X),cons(Y,L))) |
→ |
take#(X,L) |
(42) |
active#(length(cons(X,L))) |
→ |
s#(length(L)) |
(43) |
active#(length(cons(X,L))) |
→ |
length#(L) |
(44) |
active#(inf(X)) |
→ |
inf#(active(X)) |
(45) |
active#(inf(X)) |
→ |
active#(X) |
(46) |
active#(take(X1,X2)) |
→ |
take#(active(X1),X2) |
(47) |
active#(take(X1,X2)) |
→ |
active#(X1) |
(48) |
active#(take(X1,X2)) |
→ |
take#(X1,active(X2)) |
(49) |
active#(take(X1,X2)) |
→ |
active#(X2) |
(50) |
active#(length(X)) |
→ |
length#(active(X)) |
(51) |
active#(length(X)) |
→ |
active#(X) |
(52) |
inf#(mark(X)) |
→ |
inf#(X) |
(53) |
take#(mark(X1),X2) |
→ |
take#(X1,X2) |
(54) |
take#(X1,mark(X2)) |
→ |
take#(X1,X2) |
(55) |
length#(mark(X)) |
→ |
length#(X) |
(56) |
proper#(eq(X1,X2)) |
→ |
eq#(proper(X1),proper(X2)) |
(57) |
proper#(eq(X1,X2)) |
→ |
proper#(X1) |
(58) |
proper#(eq(X1,X2)) |
→ |
proper#(X2) |
(59) |
proper#(s(X)) |
→ |
s#(proper(X)) |
(60) |
proper#(s(X)) |
→ |
proper#(X) |
(61) |
proper#(inf(X)) |
→ |
inf#(proper(X)) |
(62) |
proper#(inf(X)) |
→ |
proper#(X) |
(63) |
proper#(cons(any(X1),X2)) |
→ |
cons#(any(any(proper(X1))),any(proper(X2))) |
(64) |
proper#(cons(any(X1),X2)) |
→ |
any#(any(proper(X1))) |
(65) |
proper#(cons(any(X1),X2)) |
→ |
any#(proper(X1)) |
(66) |
proper#(cons(any(X1),X2)) |
→ |
proper#(X1) |
(67) |
proper#(cons(any(X1),X2)) |
→ |
any#(proper(X2)) |
(68) |
proper#(cons(any(X1),X2)) |
→ |
proper#(X2) |
(69) |
proper#(take(X1,X2)) |
→ |
take#(proper(X1),proper(X2)) |
(70) |
proper#(take(X1,X2)) |
→ |
proper#(X1) |
(71) |
proper#(take(X1,X2)) |
→ |
proper#(X2) |
(72) |
proper#(length(X)) |
→ |
length#(proper(X)) |
(73) |
proper#(length(X)) |
→ |
proper#(X) |
(74) |
eq#(ok(X1),ok(X2)) |
→ |
eq#(X1,X2) |
(75) |
s#(ok(X)) |
→ |
s#(X) |
(76) |
inf#(ok(X)) |
→ |
inf#(X) |
(77) |
cons#(ok(X1),ok(X2)) |
→ |
cons#(X1,X2) |
(78) |
take#(ok(X1),ok(X2)) |
→ |
take#(X1,X2) |
(79) |
length#(ok(X)) |
→ |
length#(X) |
(80) |
top#(mark(X)) |
→ |
top#(proper(X)) |
(81) |
top#(mark(X)) |
→ |
proper#(X) |
(82) |
top#(ok(X)) |
→ |
top#(active(X)) |
(83) |
top#(ok(X)) |
→ |
active#(X) |
(84) |
any#(X) |
→ |
s#(X) |
(85) |
any#(proper(X)) |
→ |
any#(any(any(X))) |
(86) |
any#(proper(X)) |
→ |
any#(any(X)) |
(87) |
any#(proper(X)) |
→ |
any#(X) |
(88) |
The dependency pairs are split into 10
components.
-
The
1st
component contains the
pair
top#(ok(X)) |
→ |
top#(active(X)) |
(83) |
top#(mark(X)) |
→ |
top#(proper(X)) |
(81) |
1.1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[proper(x1)] |
= |
1 · x1
|
[eq(x1, x2)] |
= |
2 · x1 + 2 · x2
|
[0] |
= |
0 |
[ok(x1)] |
= |
2 · x1
|
[true] |
= |
0 |
[s(x1)] |
= |
1 · x1
|
[false] |
= |
0 |
[inf(x1)] |
= |
2 · x1
|
[cons(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[any(x1)] |
= |
1 · x1
|
[take(x1, x2)] |
= |
2 · x1 + 1 · x2
|
[nil] |
= |
0 |
[length(x1)] |
= |
2 · x1
|
[mark(x1)] |
= |
1 · x1
|
[active(x1)] |
= |
2 · x1
|
[top#(x1)] |
= |
1 · x1
|
together with the usable
rules
proper(eq(X1,X2)) |
→ |
eq(proper(X1),proper(X2)) |
(17) |
proper(0) |
→ |
ok(0) |
(18) |
proper(true) |
→ |
ok(true) |
(19) |
proper(s(X)) |
→ |
s(proper(X)) |
(20) |
proper(false) |
→ |
ok(false) |
(21) |
proper(inf(X)) |
→ |
inf(proper(X)) |
(22) |
proper(cons(any(X1),X2)) |
→ |
cons(any(any(proper(X1))),any(proper(X2))) |
(23) |
proper(take(X1,X2)) |
→ |
take(proper(X1),proper(X2)) |
(24) |
proper(nil) |
→ |
ok(nil) |
(25) |
proper(length(X)) |
→ |
length(proper(X)) |
(26) |
length(mark(X)) |
→ |
mark(length(X)) |
(16) |
length(ok(X)) |
→ |
ok(length(X)) |
(32) |
take(mark(X1),X2) |
→ |
mark(take(X1,X2)) |
(14) |
take(X1,mark(X2)) |
→ |
mark(take(X1,X2)) |
(15) |
take(ok(X1),ok(X2)) |
→ |
ok(take(X1,X2)) |
(31) |
any(X) |
→ |
s(X) |
(35) |
any(proper(X)) |
→ |
any(any(any(X))) |
(36) |
cons(ok(X1),ok(X2)) |
→ |
ok(cons(X1,X2)) |
(30) |
s(ok(X)) |
→ |
ok(s(X)) |
(28) |
inf(mark(X)) |
→ |
mark(inf(X)) |
(13) |
inf(ok(X)) |
→ |
ok(inf(X)) |
(29) |
eq(ok(X1),ok(X2)) |
→ |
ok(eq(X1,X2)) |
(27) |
active(eq(0,0)) |
→ |
mark(true) |
(1) |
active(eq(s(X),s(Y))) |
→ |
mark(eq(X,Y)) |
(2) |
active(eq(X,Y)) |
→ |
mark(false) |
(3) |
active(inf(X)) |
→ |
mark(cons(X,inf(s(X)))) |
(4) |
active(take(0,X)) |
→ |
mark(nil) |
(5) |
active(take(s(X),cons(Y,L))) |
→ |
mark(cons(Y,take(X,L))) |
(6) |
active(length(nil)) |
→ |
mark(0) |
(7) |
active(length(cons(X,L))) |
→ |
mark(s(length(L))) |
(8) |
active(inf(X)) |
→ |
inf(active(X)) |
(9) |
active(take(X1,X2)) |
→ |
take(active(X1),X2) |
(10) |
active(take(X1,X2)) |
→ |
take(X1,active(X2)) |
(11) |
active(length(X)) |
→ |
length(active(X)) |
(12) |
(w.r.t. the implicit argument filter of the reduction pair),
the
rule
could be deleted.
1.1.1.1 Reduction Pair Processor with Usable Rules
Using the matrix interpretations of dimension 2 with strict dimension 1 over the integers
[top#(x1)] |
= |
+ · x1
|
[ok(x1)] |
= |
+ · x1
|
[active(x1)] |
= |
+ · x1
|
[mark(x1)] |
= |
+ · x1
|
[proper(x1)] |
= |
+ · x1
|
[eq(x1, x2)] |
= |
+ · x1 + · x2
|
[0] |
= |
|
[true] |
= |
|
[s(x1)] |
= |
+ · x1
|
[false] |
= |
|
[inf(x1)] |
= |
+ · x1
|
[cons(x1, x2)] |
= |
+ · x1 + · x2
|
[take(x1, x2)] |
= |
+ · x1 + · x2
|
[nil] |
= |
|
[length(x1)] |
= |
+ · x1
|
[any(x1)] |
= |
+ · x1
|
together with the usable
rules
active(eq(0,0)) |
→ |
mark(true) |
(1) |
active(eq(s(X),s(Y))) |
→ |
mark(eq(X,Y)) |
(2) |
active(eq(X,Y)) |
→ |
mark(false) |
(3) |
active(inf(X)) |
→ |
mark(cons(X,inf(s(X)))) |
(4) |
active(take(0,X)) |
→ |
mark(nil) |
(5) |
active(take(s(X),cons(Y,L))) |
→ |
mark(cons(Y,take(X,L))) |
(6) |
active(length(nil)) |
→ |
mark(0) |
(7) |
active(length(cons(X,L))) |
→ |
mark(s(length(L))) |
(8) |
active(inf(X)) |
→ |
inf(active(X)) |
(9) |
active(take(X1,X2)) |
→ |
take(active(X1),X2) |
(10) |
active(take(X1,X2)) |
→ |
take(X1,active(X2)) |
(11) |
active(length(X)) |
→ |
length(active(X)) |
(12) |
proper(eq(X1,X2)) |
→ |
eq(proper(X1),proper(X2)) |
(17) |
proper(0) |
→ |
ok(0) |
(18) |
proper(true) |
→ |
ok(true) |
(19) |
proper(s(X)) |
→ |
s(proper(X)) |
(20) |
proper(false) |
→ |
ok(false) |
(21) |
proper(inf(X)) |
→ |
inf(proper(X)) |
(22) |
proper(cons(any(X1),X2)) |
→ |
cons(any(any(proper(X1))),any(proper(X2))) |
(23) |
proper(take(X1,X2)) |
→ |
take(proper(X1),proper(X2)) |
(24) |
proper(nil) |
→ |
ok(nil) |
(25) |
proper(length(X)) |
→ |
length(proper(X)) |
(26) |
s(ok(X)) |
→ |
ok(s(X)) |
(28) |
eq(ok(X1),ok(X2)) |
→ |
ok(eq(X1,X2)) |
(27) |
inf(mark(X)) |
→ |
mark(inf(X)) |
(13) |
inf(ok(X)) |
→ |
ok(inf(X)) |
(29) |
cons(ok(X1),ok(X2)) |
→ |
ok(cons(X1,X2)) |
(30) |
take(mark(X1),X2) |
→ |
mark(take(X1,X2)) |
(14) |
take(X1,mark(X2)) |
→ |
mark(take(X1,X2)) |
(15) |
take(ok(X1),ok(X2)) |
→ |
ok(take(X1,X2)) |
(31) |
length(mark(X)) |
→ |
mark(length(X)) |
(16) |
length(ok(X)) |
→ |
ok(length(X)) |
(32) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
top#(mark(X)) |
→ |
top#(proper(X)) |
(81) |
could be deleted.
1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[active(x1)] |
= |
2 · x1
|
[eq(x1, x2)] |
= |
1 · x1 + 2 · x2
|
[0] |
= |
0 |
[mark(x1)] |
= |
1 · x1
|
[true] |
= |
0 |
[s(x1)] |
= |
1 · x1
|
[false] |
= |
0 |
[inf(x1)] |
= |
2 · x1
|
[cons(x1, x2)] |
= |
2 · x1 + 1 · x2
|
[take(x1, x2)] |
= |
1 · x1 + 2 · x2
|
[nil] |
= |
0 |
[length(x1)] |
= |
1 · x1
|
[ok(x1)] |
= |
2 · x1
|
[top#(x1)] |
= |
1 · x1
|
together with the usable
rules
active(eq(0,0)) |
→ |
mark(true) |
(1) |
active(eq(s(X),s(Y))) |
→ |
mark(eq(X,Y)) |
(2) |
active(eq(X,Y)) |
→ |
mark(false) |
(3) |
active(inf(X)) |
→ |
mark(cons(X,inf(s(X)))) |
(4) |
active(take(0,X)) |
→ |
mark(nil) |
(5) |
active(take(s(X),cons(Y,L))) |
→ |
mark(cons(Y,take(X,L))) |
(6) |
active(length(nil)) |
→ |
mark(0) |
(7) |
active(length(cons(X,L))) |
→ |
mark(s(length(L))) |
(8) |
active(inf(X)) |
→ |
inf(active(X)) |
(9) |
active(take(X1,X2)) |
→ |
take(active(X1),X2) |
(10) |
active(take(X1,X2)) |
→ |
take(X1,active(X2)) |
(11) |
active(length(X)) |
→ |
length(active(X)) |
(12) |
length(mark(X)) |
→ |
mark(length(X)) |
(16) |
length(ok(X)) |
→ |
ok(length(X)) |
(32) |
take(mark(X1),X2) |
→ |
mark(take(X1,X2)) |
(14) |
take(X1,mark(X2)) |
→ |
mark(take(X1,X2)) |
(15) |
take(ok(X1),ok(X2)) |
→ |
ok(take(X1,X2)) |
(31) |
inf(mark(X)) |
→ |
mark(inf(X)) |
(13) |
inf(ok(X)) |
→ |
ok(inf(X)) |
(29) |
s(ok(X)) |
→ |
ok(s(X)) |
(28) |
cons(ok(X1),ok(X2)) |
→ |
ok(cons(X1,X2)) |
(30) |
eq(ok(X1),ok(X2)) |
→ |
ok(eq(X1,X2)) |
(27) |
(w.r.t. the implicit argument filter of the reduction pair),
the
rule
could be deleted.
1.1.1.1.1.1 Monotonic Reduction Pair Processor
Using the linear polynomial interpretation over the naturals
[active(x1)] |
= |
2 · x1
|
[eq(x1, x2)] |
= |
2 · x1 + 1 · x2
|
[0] |
= |
1 |
[mark(x1)] |
= |
1 · x1
|
[true] |
= |
1 |
[s(x1)] |
= |
1 · x1
|
[false] |
= |
0 |
[inf(x1)] |
= |
1 · x1
|
[cons(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[take(x1, x2)] |
= |
1 · x1 + 2 · x2
|
[nil] |
= |
2 |
[length(x1)] |
= |
2 · x1
|
[ok(x1)] |
= |
2 · x1
|
[top#(x1)] |
= |
2 · x1
|
the
rules
active(eq(0,0)) |
→ |
mark(true) |
(1) |
active(length(nil)) |
→ |
mark(0) |
(7) |
could be deleted.
1.1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[active(x1)] |
= |
2 · x1
|
[eq(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[s(x1)] |
= |
1 · x1
|
[mark(x1)] |
= |
1 · x1
|
[false] |
= |
0 |
[inf(x1)] |
= |
2 · x1
|
[cons(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[take(x1, x2)] |
= |
2 · x1 + 1 · x2
|
[0] |
= |
1 |
[nil] |
= |
2 |
[length(x1)] |
= |
2 · x1
|
[ok(x1)] |
= |
2 · x1
|
[top#(x1)] |
= |
1 · x1
|
together with the usable
rules
active(eq(s(X),s(Y))) |
→ |
mark(eq(X,Y)) |
(2) |
active(eq(X,Y)) |
→ |
mark(false) |
(3) |
active(inf(X)) |
→ |
mark(cons(X,inf(s(X)))) |
(4) |
active(take(0,X)) |
→ |
mark(nil) |
(5) |
active(take(s(X),cons(Y,L))) |
→ |
mark(cons(Y,take(X,L))) |
(6) |
active(length(cons(X,L))) |
→ |
mark(s(length(L))) |
(8) |
active(inf(X)) |
→ |
inf(active(X)) |
(9) |
active(take(X1,X2)) |
→ |
take(active(X1),X2) |
(10) |
active(take(X1,X2)) |
→ |
take(X1,active(X2)) |
(11) |
active(length(X)) |
→ |
length(active(X)) |
(12) |
length(mark(X)) |
→ |
mark(length(X)) |
(16) |
length(ok(X)) |
→ |
ok(length(X)) |
(32) |
take(mark(X1),X2) |
→ |
mark(take(X1,X2)) |
(14) |
take(X1,mark(X2)) |
→ |
mark(take(X1,X2)) |
(15) |
take(ok(X1),ok(X2)) |
→ |
ok(take(X1,X2)) |
(31) |
inf(mark(X)) |
→ |
mark(inf(X)) |
(13) |
inf(ok(X)) |
→ |
ok(inf(X)) |
(29) |
s(ok(X)) |
→ |
ok(s(X)) |
(28) |
cons(ok(X1),ok(X2)) |
→ |
ok(cons(X1,X2)) |
(30) |
eq(ok(X1),ok(X2)) |
→ |
ok(eq(X1,X2)) |
(27) |
(w.r.t. the implicit argument filter of the reduction pair),
the
rule
active(take(0,X)) |
→ |
mark(nil) |
(5) |
could be deleted.
1.1.1.1.1.1.1.1 Monotonic Reduction Pair Processor
Using the linear polynomial interpretation over the naturals
[active(x1)] |
= |
2 · x1
|
[eq(x1, x2)] |
= |
1 + 1 · x1 + 2 · x2
|
[s(x1)] |
= |
1 · x1
|
[mark(x1)] |
= |
1 · x1
|
[false] |
= |
1 |
[inf(x1)] |
= |
2 · x1
|
[cons(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[take(x1, x2)] |
= |
1 + 2 · x1 + 2 · x2
|
[length(x1)] |
= |
2 + 2 · x1
|
[ok(x1)] |
= |
2 + 2 · x1
|
[top#(x1)] |
= |
1 · x1
|
the
pair
top#(ok(X)) |
→ |
top#(active(X)) |
(83) |
and
the
rules
active(eq(s(X),s(Y))) |
→ |
mark(eq(X,Y)) |
(2) |
active(eq(X,Y)) |
→ |
mark(false) |
(3) |
active(take(s(X),cons(Y,L))) |
→ |
mark(cons(Y,take(X,L))) |
(6) |
active(length(cons(X,L))) |
→ |
mark(s(length(L))) |
(8) |
active(take(X1,X2)) |
→ |
take(active(X1),X2) |
(10) |
active(take(X1,X2)) |
→ |
take(X1,active(X2)) |
(11) |
active(length(X)) |
→ |
length(active(X)) |
(12) |
take(ok(X1),ok(X2)) |
→ |
ok(take(X1,X2)) |
(31) |
inf(ok(X)) |
→ |
ok(inf(X)) |
(29) |
cons(ok(X1),ok(X2)) |
→ |
ok(cons(X1,X2)) |
(30) |
eq(ok(X1),ok(X2)) |
→ |
ok(eq(X1,X2)) |
(27) |
could be deleted.
1.1.1.1.1.1.1.1.1 P is empty
There are no pairs anymore.
-
The
2nd
component contains the
pair
proper#(eq(X1,X2)) |
→ |
proper#(X2) |
(59) |
proper#(eq(X1,X2)) |
→ |
proper#(X1) |
(58) |
proper#(s(X)) |
→ |
proper#(X) |
(61) |
proper#(inf(X)) |
→ |
proper#(X) |
(63) |
proper#(cons(any(X1),X2)) |
→ |
proper#(X1) |
(67) |
proper#(cons(any(X1),X2)) |
→ |
proper#(X2) |
(69) |
proper#(take(X1,X2)) |
→ |
proper#(X1) |
(71) |
proper#(take(X1,X2)) |
→ |
proper#(X2) |
(72) |
proper#(length(X)) |
→ |
proper#(X) |
(74) |
1.1.2 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[eq(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[s(x1)] |
= |
1 · x1
|
[inf(x1)] |
= |
1 · x1
|
[cons(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[any(x1)] |
= |
1 · x1
|
[take(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[length(x1)] |
= |
1 · x1
|
[proper#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.2.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
proper#(eq(X1,X2)) |
→ |
proper#(X2) |
(59) |
|
1 |
> |
1 |
proper#(eq(X1,X2)) |
→ |
proper#(X1) |
(58) |
|
1 |
> |
1 |
proper#(s(X)) |
→ |
proper#(X) |
(61) |
|
1 |
> |
1 |
proper#(inf(X)) |
→ |
proper#(X) |
(63) |
|
1 |
> |
1 |
proper#(cons(any(X1),X2)) |
→ |
proper#(X1) |
(67) |
|
1 |
> |
1 |
proper#(cons(any(X1),X2)) |
→ |
proper#(X2) |
(69) |
|
1 |
> |
1 |
proper#(take(X1,X2)) |
→ |
proper#(X1) |
(71) |
|
1 |
> |
1 |
proper#(take(X1,X2)) |
→ |
proper#(X2) |
(72) |
|
1 |
> |
1 |
proper#(length(X)) |
→ |
proper#(X) |
(74) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
3rd
component contains the
pair
any#(proper(X)) |
→ |
any#(X) |
(88) |
1.1.3 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[proper(x1)] |
= |
1 · x1
|
[any#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.3.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
any#(proper(X)) |
→ |
any#(X) |
(88) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
4th
component contains the
pair
active#(take(X1,X2)) |
→ |
active#(X1) |
(48) |
active#(inf(X)) |
→ |
active#(X) |
(46) |
active#(take(X1,X2)) |
→ |
active#(X2) |
(50) |
active#(length(X)) |
→ |
active#(X) |
(52) |
1.1.4 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[take(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[inf(x1)] |
= |
1 · x1
|
[length(x1)] |
= |
1 · x1
|
[active#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.4.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
active#(take(X1,X2)) |
→ |
active#(X1) |
(48) |
|
1 |
> |
1 |
active#(inf(X)) |
→ |
active#(X) |
(46) |
|
1 |
> |
1 |
active#(take(X1,X2)) |
→ |
active#(X2) |
(50) |
|
1 |
> |
1 |
active#(length(X)) |
→ |
active#(X) |
(52) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
5th
component contains the
pair
inf#(ok(X)) |
→ |
inf#(X) |
(77) |
inf#(mark(X)) |
→ |
inf#(X) |
(53) |
1.1.5 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[ok(x1)] |
= |
1 · x1
|
[mark(x1)] |
= |
1 · x1
|
[inf#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.5.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
inf#(ok(X)) |
→ |
inf#(X) |
(77) |
|
1 |
> |
1 |
inf#(mark(X)) |
→ |
inf#(X) |
(53) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
6th
component contains the
pair
take#(X1,mark(X2)) |
→ |
take#(X1,X2) |
(55) |
take#(mark(X1),X2) |
→ |
take#(X1,X2) |
(54) |
take#(ok(X1),ok(X2)) |
→ |
take#(X1,X2) |
(79) |
1.1.6 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[mark(x1)] |
= |
1 · x1
|
[ok(x1)] |
= |
1 · x1
|
[take#(x1, x2)] |
= |
1 · x1 + 1 · x2
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.6.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
take#(X1,mark(X2)) |
→ |
take#(X1,X2) |
(55) |
|
1 |
≥ |
1 |
2 |
> |
2 |
take#(mark(X1),X2) |
→ |
take#(X1,X2) |
(54) |
|
1 |
> |
1 |
2 |
≥ |
2 |
take#(ok(X1),ok(X2)) |
→ |
take#(X1,X2) |
(79) |
|
1 |
> |
1 |
2 |
> |
2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
7th
component contains the
pair
length#(ok(X)) |
→ |
length#(X) |
(80) |
length#(mark(X)) |
→ |
length#(X) |
(56) |
1.1.7 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[ok(x1)] |
= |
1 · x1
|
[mark(x1)] |
= |
1 · x1
|
[length#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.7.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
length#(ok(X)) |
→ |
length#(X) |
(80) |
|
1 |
> |
1 |
length#(mark(X)) |
→ |
length#(X) |
(56) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
8th
component contains the
pair
eq#(ok(X1),ok(X2)) |
→ |
eq#(X1,X2) |
(75) |
1.1.8 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[ok(x1)] |
= |
1 · x1
|
[eq#(x1, x2)] |
= |
1 · x1 + 1 · x2
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.8.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
eq#(ok(X1),ok(X2)) |
→ |
eq#(X1,X2) |
(75) |
|
1 |
> |
1 |
2 |
> |
2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
9th
component contains the
pair
1.1.9 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[ok(x1)] |
= |
1 · x1
|
[s#(x1)] |
= |
1 · x1
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.9.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
s#(ok(X)) |
→ |
s#(X) |
(76) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
10th
component contains the
pair
cons#(ok(X1),ok(X2)) |
→ |
cons#(X1,X2) |
(78) |
1.1.10 Monotonic Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[ok(x1)] |
= |
1 · x1
|
[cons#(x1, x2)] |
= |
1 · x1 + 1 · x2
|
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
rule
could be deleted.
1.1.10.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
cons#(ok(X1),ok(X2)) |
→ |
cons#(X1,X2) |
(78) |
|
1 |
> |
1 |
2 |
> |
2 |
As there is no critical graph in the transitive closure, there are no infinite chains.