The rewrite relation of the following TRS is considered.
app(app(map,f),nil) | → | nil | (1) |
app(app(map,f),app(app(cons,x),xs)) | → | app(app(cons,app(f,x)),app(app(map,f),xs)) | (2) |
app(app(minus,x),0) | → | x | (3) |
app(app(minus,app(s,x)),app(s,y)) | → | app(app(minus,app(p,app(s,x))),app(p,app(s,y))) | (4) |
app(p,app(s,x)) | → | x | (5) |
app(app(div,0),app(s,y)) | → | 0 | (6) |
app(app(div,app(s,x)),app(s,y)) | → | app(s,app(app(div,app(app(minus,x),app(id,y))),app(s,y))) | (7) |
app(id,x) | → | x | (8) |
app(id,x) | → | app(s,app(s,app(s,x))) | (9) |
app(id,app(p,x)) | → | app(id,app(s,app(id,x))) | (10) |
We uncurry the binary symbol app in combination with the following symbol map which also determines the applicative arities of these symbols.
map | is mapped to | map, | map1(x1), | map2(x1, x2) |
nil | is mapped to | nil | ||
cons | is mapped to | cons, | cons1(x1), | cons2(x1, x2) |
minus | is mapped to | minus, | minus1(x1), | minus2(x1, x2) |
0 | is mapped to | 0 | ||
s | is mapped to | s, | s1(x1) | |
p | is mapped to | p, | p1(x1) | |
div | is mapped to | div, | div1(x1), | div2(x1, x2) |
id | is mapped to | id, | id1(x1) |
map2(f,nil) | → | nil | (22) |
map2(f,cons2(x,xs)) | → | cons2(app(f,x),map2(f,xs)) | (23) |
minus2(x,0) | → | x | (24) |
minus2(s1(x),s1(y)) | → | minus2(p1(s1(x)),p1(s1(y))) | (25) |
p1(s1(x)) | → | x | (26) |
div2(0,s1(y)) | → | 0 | (27) |
div2(s1(x),s1(y)) | → | s1(div2(minus2(x,id1(y)),s1(y))) | (28) |
id1(x) | → | x | (29) |
id1(x) | → | s1(s1(s1(x))) | (30) |
id1(p1(x)) | → | id1(s1(id1(x))) | (31) |
app(map,y1) | → | map1(y1) | (11) |
app(map1(x0),y1) | → | map2(x0,y1) | (12) |
app(cons,y1) | → | cons1(y1) | (13) |
app(cons1(x0),y1) | → | cons2(x0,y1) | (14) |
app(minus,y1) | → | minus1(y1) | (15) |
app(minus1(x0),y1) | → | minus2(x0,y1) | (16) |
app(s,y1) | → | s1(y1) | (17) |
app(p,y1) | → | p1(y1) | (18) |
app(div,y1) | → | div1(y1) | (19) |
app(div1(x0),y1) | → | div2(x0,y1) | (20) |
app(id,y1) | → | id1(y1) | (21) |
map2#(f,cons2(x,xs)) | → | app#(f,x) | (32) |
map2#(f,cons2(x,xs)) | → | map2#(f,xs) | (33) |
minus2#(s1(x),s1(y)) | → | minus2#(p1(s1(x)),p1(s1(y))) | (34) |
minus2#(s1(x),s1(y)) | → | p1#(s1(x)) | (35) |
minus2#(s1(x),s1(y)) | → | p1#(s1(y)) | (36) |
div2#(s1(x),s1(y)) | → | div2#(minus2(x,id1(y)),s1(y)) | (37) |
div2#(s1(x),s1(y)) | → | minus2#(x,id1(y)) | (38) |
div2#(s1(x),s1(y)) | → | id1#(y) | (39) |
id1#(p1(x)) | → | id1#(s1(id1(x))) | (40) |
id1#(p1(x)) | → | id1#(x) | (41) |
app#(map1(x0),y1) | → | map2#(x0,y1) | (42) |
app#(minus1(x0),y1) | → | minus2#(x0,y1) | (43) |
app#(p,y1) | → | p1#(y1) | (44) |
app#(div1(x0),y1) | → | div2#(x0,y1) | (45) |
app#(id,y1) | → | id1#(y1) | (46) |
The dependency pairs are split into 4 components.
app#(map1(x0),y1) | → | map2#(x0,y1) | (42) |
map2#(f,cons2(x,xs)) | → | app#(f,x) | (32) |
map2#(f,cons2(x,xs)) | → | map2#(f,xs) | (33) |
[map1(x1)] | = | 1 · x1 |
[cons2(x1, x2)] | = | 1 · x1 + 1 · x2 |
[map2#(x1, x2)] | = | 1 · x1 + 1 · x2 |
[app#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
map2#(f,cons2(x,xs)) | → | app#(f,x) | (32) |
1 | ≥ | 1 | |
2 | > | 2 | |
map2#(f,cons2(x,xs)) | → | map2#(f,xs) | (33) |
1 | ≥ | 1 | |
2 | > | 2 | |
app#(map1(x0),y1) | → | map2#(x0,y1) | (42) |
1 | > | 1 | |
2 | ≥ | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
div2#(s1(x),s1(y)) | → | div2#(minus2(x,id1(y)),s1(y)) | (37) |
prec(s1) | = | 1 | weight(s1) | = | 1 |
π(div2#) | = | 1 |
π(s1) | = | [1] |
π(minus2) | = | 1 |
π(p1) | = | 1 |
minus2(x,0) | → | x | (24) |
minus2(s1(x),s1(y)) | → | minus2(p1(s1(x)),p1(s1(y))) | (25) |
p1(s1(x)) | → | x | (26) |
div2#(s1(x),s1(y)) | → | div2#(minus2(x,id1(y)),s1(y)) | (37) |
There are no pairs anymore.
minus2#(s1(x),s1(y)) | → | minus2#(p1(s1(x)),p1(s1(y))) | (34) |
[p1(x1)] | = | 1 · x1 |
[s1(x1)] | = | 1 · x1 |
[minus2#(x1, x2)] | = | 1 · x1 + 1 · x2 |
p1(s1(x)) | → | x | (26) |
20
Hence, it suffices to show innermost termination in the following.[p1(x1)] | = | 1 · x1 |
[s1(x1)] | = | 2 + 2 · x1 |
[minus2#(x1, x2)] | = | 2 · x1 + 2 · x2 |
p1(s1(x)) | → | x | (26) |
prec(s1) | = | 1 | weight(s1) | = | 1 | ||||
prec(p1) | = | 0 | weight(p1) | = | 1 |
π(minus2#) | = | 2 |
π(s1) | = | [] |
π(p1) | = | [] |
minus2#(s1(x),s1(y)) | → | minus2#(p1(s1(x)),p1(s1(y))) | (34) |
There are no pairs anymore.
id1#(p1(x)) | → | id1#(x) | (41) |
[p1(x1)] | = | 1 · x1 |
[id1#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
id1#(p1(x)) | → | id1#(x) | (41) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.