The rewrite relation of the following TRS is considered.
app(app(app(if,true),xs),ys) |
→ |
xs |
(1) |
app(app(app(if,false),xs),ys) |
→ |
ys |
(2) |
app(app(lt,app(s,x)),app(s,y)) |
→ |
app(app(lt,x),y) |
(3) |
app(app(lt,0),app(s,y)) |
→ |
true |
(4) |
app(app(lt,y),0) |
→ |
false |
(5) |
app(app(eq,x),x) |
→ |
true |
(6) |
app(app(eq,app(s,x)),0) |
→ |
false |
(7) |
app(app(eq,0),app(s,x)) |
→ |
false |
(8) |
app(app(merge,xs),nil) |
→ |
xs |
(9) |
app(app(merge,nil),ys) |
→ |
ys |
(10) |
app(app(merge,app(app(cons,x),xs)),app(app(cons,y),ys)) |
→ |
app(app(app(if,app(app(lt,x),y)),app(app(cons,x),app(app(merge,xs),app(app(cons,y),ys)))),app(app(app(if,app(app(eq,x),y)),app(app(cons,x),app(app(merge,xs),ys))),app(app(cons,y),app(app(merge,app(app(cons,x),xs)),ys)))) |
(11) |
app(app(map,f),nil) |
→ |
nil |
(12) |
app(app(map,f),app(app(cons,x),xs)) |
→ |
app(app(cons,app(f,x)),app(app(map,f),xs)) |
(13) |
app(app(mult,0),x) |
→ |
0 |
(14) |
app(app(mult,app(s,x)),y) |
→ |
app(app(plus,y),app(app(mult,x),y)) |
(15) |
app(app(plus,0),x) |
→ |
0 |
(16) |
app(app(plus,app(s,x)),y) |
→ |
app(s,app(app(plus,x),y)) |
(17) |
list1 |
→ |
app(app(map,app(mult,app(s,app(s,0)))),hamming) |
(18) |
list2 |
→ |
app(app(map,app(mult,app(s,app(s,app(s,0))))),hamming) |
(19) |
list3 |
→ |
app(app(map,app(mult,app(s,app(s,app(s,app(s,app(s,0))))))),hamming) |
(20) |
hamming |
→ |
app(app(cons,app(s,0)),app(app(merge,list1),app(app(merge,list2),list3))) |
(21) |
if3(true,xs,ys) |
→ |
xs |
(40) |
if3(false,xs,ys) |
→ |
ys |
(41) |
lt2(s1(x),s1(y)) |
→ |
lt2(x,y) |
(42) |
lt2(0,s1(y)) |
→ |
true |
(43) |
lt2(y,0) |
→ |
false |
(44) |
eq2(x,x) |
→ |
true |
(45) |
eq2(s1(x),0) |
→ |
false |
(46) |
eq2(0,s1(x)) |
→ |
false |
(47) |
merge2(xs,nil) |
→ |
xs |
(48) |
merge2(nil,ys) |
→ |
ys |
(49) |
merge2(cons2(x,xs),cons2(y,ys)) |
→ |
if3(lt2(x,y),cons2(x,merge2(xs,cons2(y,ys))),if3(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys)))) |
(50) |
map2(f,nil) |
→ |
nil |
(51) |
map2(f,cons2(x,xs)) |
→ |
cons2(app(f,x),map2(f,xs)) |
(52) |
mult2(0,x) |
→ |
0 |
(53) |
mult2(s1(x),y) |
→ |
plus2(y,mult2(x,y)) |
(54) |
plus2(0,x) |
→ |
0 |
(55) |
plus2(s1(x),y) |
→ |
s1(plus2(x,y)) |
(56) |
list1 |
→ |
map2(mult1(s1(s1(0))),hamming) |
(57) |
list2 |
→ |
map2(mult1(s1(s1(s1(0)))),hamming) |
(58) |
list3 |
→ |
map2(mult1(s1(s1(s1(s1(s1(0)))))),hamming) |
(59) |
hamming |
→ |
cons2(s1(0),merge2(list1,merge2(list2,list3))) |
(60) |
app(if,y1) |
→ |
if1(y1) |
(22) |
app(if1(x0),y1) |
→ |
if2(x0,y1) |
(23) |
app(if2(x0,x1),y1) |
→ |
if3(x0,x1,y1) |
(24) |
app(lt,y1) |
→ |
lt1(y1) |
(25) |
app(lt1(x0),y1) |
→ |
lt2(x0,y1) |
(26) |
app(s,y1) |
→ |
s1(y1) |
(27) |
app(eq,y1) |
→ |
eq1(y1) |
(28) |
app(eq1(x0),y1) |
→ |
eq2(x0,y1) |
(29) |
app(merge,y1) |
→ |
merge1(y1) |
(30) |
app(merge1(x0),y1) |
→ |
merge2(x0,y1) |
(31) |
app(cons,y1) |
→ |
cons1(y1) |
(32) |
app(cons1(x0),y1) |
→ |
cons2(x0,y1) |
(33) |
app(map,y1) |
→ |
map1(y1) |
(34) |
app(map1(x0),y1) |
→ |
map2(x0,y1) |
(35) |
app(mult,y1) |
→ |
mult1(y1) |
(36) |
app(mult1(x0),y1) |
→ |
mult2(x0,y1) |
(37) |
app(plus,y1) |
→ |
plus1(y1) |
(38) |
app(plus1(x0),y1) |
→ |
plus2(x0,y1) |
(39) |
lt2#(s1(x),s1(y)) |
→ |
lt2#(x,y) |
(61) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
if3#(lt2(x,y),cons2(x,merge2(xs,cons2(y,ys))),if3(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys)))) |
(62) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
lt2#(x,y) |
(63) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(xs,cons2(y,ys)) |
(64) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
if3#(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys))) |
(65) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
eq2#(x,y) |
(66) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(xs,ys) |
(67) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(cons2(x,xs),ys) |
(68) |
map2#(f,cons2(x,xs)) |
→ |
app#(f,x) |
(69) |
map2#(f,cons2(x,xs)) |
→ |
map2#(f,xs) |
(70) |
mult2#(s1(x),y) |
→ |
plus2#(y,mult2(x,y)) |
(71) |
mult2#(s1(x),y) |
→ |
mult2#(x,y) |
(72) |
plus2#(s1(x),y) |
→ |
plus2#(x,y) |
(73) |
list1# |
→ |
map2#(mult1(s1(s1(0))),hamming) |
(74) |
list1# |
→ |
hamming# |
(75) |
list2# |
→ |
map2#(mult1(s1(s1(s1(0)))),hamming) |
(76) |
list2# |
→ |
hamming# |
(77) |
list3# |
→ |
map2#(mult1(s1(s1(s1(s1(s1(0)))))),hamming) |
(78) |
list3# |
→ |
hamming# |
(79) |
hamming# |
→ |
merge2#(list1,merge2(list2,list3)) |
(80) |
hamming# |
→ |
list1# |
(81) |
hamming# |
→ |
merge2#(list2,list3) |
(82) |
hamming# |
→ |
list2# |
(83) |
hamming# |
→ |
list3# |
(84) |
app#(if2(x0,x1),y1) |
→ |
if3#(x0,x1,y1) |
(85) |
app#(lt1(x0),y1) |
→ |
lt2#(x0,y1) |
(86) |
app#(eq1(x0),y1) |
→ |
eq2#(x0,y1) |
(87) |
app#(merge1(x0),y1) |
→ |
merge2#(x0,y1) |
(88) |
app#(map1(x0),y1) |
→ |
map2#(x0,y1) |
(89) |
app#(mult1(x0),y1) |
→ |
mult2#(x0,y1) |
(90) |
app#(plus1(x0),y1) |
→ |
plus2#(x0,y1) |
(91) |
It remains to prove infiniteness of the resulting DP problem.
lt2#(s1(x),s1(y)) |
→ |
lt2#(x,y) |
(61) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
if3#(lt2(x,y),cons2(x,merge2(xs,cons2(y,ys))),if3(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys)))) |
(62) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
lt2#(x,y) |
(63) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(xs,cons2(y,ys)) |
(64) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
if3#(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys))) |
(65) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
eq2#(x,y) |
(66) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(xs,ys) |
(67) |
merge2#(cons2(x,xs),cons2(y,ys)) |
→ |
merge2#(cons2(x,xs),ys) |
(68) |
map2#(f,cons2(x,xs)) |
→ |
app#(f,x) |
(69) |
map2#(f,cons2(x,xs)) |
→ |
map2#(f,xs) |
(70) |
mult2#(s1(x),y) |
→ |
plus2#(y,mult2(x,y)) |
(71) |
mult2#(s1(x),y) |
→ |
mult2#(x,y) |
(72) |
plus2#(s1(x),y) |
→ |
plus2#(x,y) |
(73) |
list1# |
→ |
map2#(mult1(s1(s1(0))),hamming) |
(74) |
list2# |
→ |
map2#(mult1(s1(s1(s1(0)))),hamming) |
(76) |
list3# |
→ |
map2#(mult1(s1(s1(s1(s1(s1(0)))))),hamming) |
(78) |
hamming# |
→ |
merge2#(list1,merge2(list2,list3)) |
(80) |
hamming# |
→ |
merge2#(list2,list3) |
(82) |
app#(if2(x0,x1),y1) |
→ |
if3#(x0,x1,y1) |
(85) |
app#(lt1(x0),y1) |
→ |
lt2#(x0,y1) |
(86) |
app#(eq1(x0),y1) |
→ |
eq2#(x0,y1) |
(87) |
app#(merge1(x0),y1) |
→ |
merge2#(x0,y1) |
(88) |
app#(map1(x0),y1) |
→ |
map2#(x0,y1) |
(89) |
app#(mult1(x0),y1) |
→ |
mult2#(x0,y1) |
(90) |
app#(plus1(x0),y1) |
→ |
plus2#(x0,y1) |
(91) |
and the following rules have been deleted.
if3(true,xs,ys) |
→ |
xs |
(40) |
if3(false,xs,ys) |
→ |
ys |
(41) |
lt2(s1(x),s1(y)) |
→ |
lt2(x,y) |
(42) |
lt2(0,s1(y)) |
→ |
true |
(43) |
lt2(y,0) |
→ |
false |
(44) |
eq2(x,x) |
→ |
true |
(45) |
eq2(s1(x),0) |
→ |
false |
(46) |
eq2(0,s1(x)) |
→ |
false |
(47) |
merge2(xs,nil) |
→ |
xs |
(48) |
merge2(nil,ys) |
→ |
ys |
(49) |
merge2(cons2(x,xs),cons2(y,ys)) |
→ |
if3(lt2(x,y),cons2(x,merge2(xs,cons2(y,ys))),if3(eq2(x,y),cons2(x,merge2(xs,ys)),cons2(y,merge2(cons2(x,xs),ys)))) |
(50) |
map2(f,nil) |
→ |
nil |
(51) |
map2(f,cons2(x,xs)) |
→ |
cons2(app(f,x),map2(f,xs)) |
(52) |
mult2(0,x) |
→ |
0 |
(53) |
mult2(s1(x),y) |
→ |
plus2(y,mult2(x,y)) |
(54) |
plus2(0,x) |
→ |
0 |
(55) |
plus2(s1(x),y) |
→ |
s1(plus2(x,y)) |
(56) |
list1 |
→ |
map2(mult1(s1(s1(0))),hamming) |
(57) |
list2 |
→ |
map2(mult1(s1(s1(s1(0)))),hamming) |
(58) |
list3 |
→ |
map2(mult1(s1(s1(s1(s1(s1(0)))))),hamming) |
(59) |
hamming |
→ |
cons2(s1(0),merge2(list1,merge2(list2,list3))) |
(60) |
app(if,y1) |
→ |
if1(y1) |
(22) |
app(if1(x0),y1) |
→ |
if2(x0,y1) |
(23) |
app(if2(x0,x1),y1) |
→ |
if3(x0,x1,y1) |
(24) |
app(lt,y1) |
→ |
lt1(y1) |
(25) |
app(lt1(x0),y1) |
→ |
lt2(x0,y1) |
(26) |
app(s,y1) |
→ |
s1(y1) |
(27) |
app(eq,y1) |
→ |
eq1(y1) |
(28) |
app(eq1(x0),y1) |
→ |
eq2(x0,y1) |
(29) |
app(merge,y1) |
→ |
merge1(y1) |
(30) |
app(merge1(x0),y1) |
→ |
merge2(x0,y1) |
(31) |
app(cons,y1) |
→ |
cons1(y1) |
(32) |
app(cons1(x0),y1) |
→ |
cons2(x0,y1) |
(33) |
app(map,y1) |
→ |
map1(y1) |
(34) |
app(map1(x0),y1) |
→ |
map2(x0,y1) |
(35) |
app(mult,y1) |
→ |
mult1(y1) |
(36) |
app(mult1(x0),y1) |
→ |
mult2(x0,y1) |
(37) |
app(plus,y1) |
→ |
plus1(y1) |
(38) |
app(plus1(x0),y1) |
→ |
plus2(x0,y1) |
(39) |
We restrict the innermost strategy to the following left hand sides.
There are no lhss.