The rewrite relation of the following TRS is considered.
| D(t) | → | 1 | (1) |
| D(constant) | → | 0 | (2) |
| D(+(x,y)) | → | +(D(x),D(y)) | (3) |
| D(*(x,y)) | → | +(*(y,D(x)),*(x,D(y))) | (4) |
| D(-(x,y)) | → | -(D(x),D(y)) | (5) |
| D(minus(x)) | → | minus(D(x)) | (6) |
| D(div(x,y)) | → | -(div(D(x),y),div(*(x,D(y)),pow(y,2))) | (7) |
| D(ln(x)) | → | div(D(x),x) | (8) |
| D(pow(x,y)) | → | +(*(*(y,pow(x,-(y,1))),D(x)),*(*(pow(x,y),ln(x)),D(y))) | (9) |
| prec(D) | = | 4 | stat(D) | = | mul | |
| prec(t) | = | 4 | stat(t) | = | mul | |
| prec(1) | = | 4 | stat(1) | = | mul | |
| prec(constant) | = | 5 | stat(constant) | = | mul | |
| prec(0) | = | 0 | stat(0) | = | mul | |
| prec(+) | = | 1 | stat(+) | = | mul | |
| prec(*) | = | 1 | stat(*) | = | mul | |
| prec(-) | = | 2 | stat(-) | = | mul | |
| prec(div) | = | 3 | stat(div) | = | mul | |
| prec(pow) | = | 4 | stat(pow) | = | mul | |
| prec(2) | = | 3 | stat(2) | = | mul | |
| prec(ln) | = | 4 | stat(ln) | = | mul |
| π(D) | = | [1] |
| π(t) | = | [] |
| π(1) | = | [] |
| π(constant) | = | [] |
| π(0) | = | [] |
| π(+) | = | [1,2] |
| π(*) | = | [1,2] |
| π(-) | = | [1,2] |
| π(minus) | = | 1 |
| π(div) | = | [1,2] |
| π(pow) | = | [1,2] |
| π(2) | = | [] |
| π(ln) | = | [1] |
| D(t) | → | 1 | (1) |
| D(constant) | → | 0 | (2) |
| D(+(x,y)) | → | +(D(x),D(y)) | (3) |
| D(*(x,y)) | → | +(*(y,D(x)),*(x,D(y))) | (4) |
| D(-(x,y)) | → | -(D(x),D(y)) | (5) |
| D(div(x,y)) | → | -(div(D(x),y),div(*(x,D(y)),pow(y,2))) | (7) |
| D(ln(x)) | → | div(D(x),x) | (8) |
| D(pow(x,y)) | → | +(*(*(y,pow(x,-(y,1))),D(x)),*(*(pow(x,y),ln(x)),D(y))) | (9) |
| prec(D) | = | 1 | weight(D) | = | 2 | ||||
| prec(minus) | = | 0 | weight(minus) | = | 1 |
| D(minus(x)) | → | minus(D(x)) | (6) |
There are no rules in the TRS. Hence, it is terminating.