The rewrite relation of the following TRS is considered.
p(a(x0),p(x1,p(x2,x3))) | → | p(x1,p(x0,p(a(x3),x3))) | (1) |
p#(a(x0),p(x1,p(x2,x3))) | → | p#(x1,p(x0,p(a(x3),x3))) | (2) |
p#(a(x0),p(x1,p(x2,x3))) | → | p#(x0,p(a(x3),x3)) | (3) |
p#(a(x0),p(x1,p(x2,x3))) | → | p#(a(x3),x3) | (4) |
prec(p) | = | 1 | weight(p) | = | 1 |
π(p#) | = | 2 |
π(p) | = | [2] |
p#(a(x0),p(x1,p(x2,x3))) | → | p#(x0,p(a(x3),x3)) | (3) |
p#(a(x0),p(x1,p(x2,x3))) | → | p#(a(x3),x3) | (4) |
p#(a(x0),p(a(y_0),p(x2,x3))) | → | p#(a(y_0),p(x0,p(a(x3),x3))) | (5) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[a(x1)] | = | 1 |
[p(x1, x2)] | = | 0 |
[p#(x1, x2)] | = | 0 |
p#10(a0(x0),p10(a0(y_0),p00(x2,x3))) | → | p#10(a0(y_0),p00(x0,p10(a0(x3),x3))) | (6) |
p#10(a0(x0),p10(a0(y_0),p01(x2,x3))) | → | p#10(a0(y_0),p00(x0,p11(a1(x3),x3))) | (7) |
p#10(a0(x0),p10(a0(y_0),p10(x2,x3))) | → | p#10(a0(y_0),p00(x0,p10(a0(x3),x3))) | (8) |
p#10(a0(x0),p10(a0(y_0),p11(x2,x3))) | → | p#10(a0(y_0),p00(x0,p11(a1(x3),x3))) | (9) |
p#10(a0(x0),p10(a1(y_0),p00(x2,x3))) | → | p#10(a1(y_0),p00(x0,p10(a0(x3),x3))) | (10) |
p#10(a0(x0),p10(a1(y_0),p01(x2,x3))) | → | p#10(a1(y_0),p00(x0,p11(a1(x3),x3))) | (11) |
p#10(a0(x0),p10(a1(y_0),p10(x2,x3))) | → | p#10(a1(y_0),p00(x0,p10(a0(x3),x3))) | (12) |
p#10(a0(x0),p10(a1(y_0),p11(x2,x3))) | → | p#10(a1(y_0),p00(x0,p11(a1(x3),x3))) | (13) |
p#10(a1(x0),p10(a0(y_0),p00(x2,x3))) | → | p#10(a0(y_0),p10(x0,p10(a0(x3),x3))) | (14) |
p#10(a1(x0),p10(a0(y_0),p01(x2,x3))) | → | p#10(a0(y_0),p10(x0,p11(a1(x3),x3))) | (15) |
p#10(a1(x0),p10(a0(y_0),p10(x2,x3))) | → | p#10(a0(y_0),p10(x0,p10(a0(x3),x3))) | (16) |
p#10(a1(x0),p10(a0(y_0),p11(x2,x3))) | → | p#10(a0(y_0),p10(x0,p11(a1(x3),x3))) | (17) |
p#10(a1(x0),p10(a1(y_0),p00(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (18) |
p#10(a1(x0),p10(a1(y_0),p01(x2,x3))) | → | p#10(a1(y_0),p10(x0,p11(a1(x3),x3))) | (19) |
p#10(a1(x0),p10(a1(y_0),p10(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (20) |
p#10(a1(x0),p10(a1(y_0),p11(x2,x3))) | → | p#10(a1(y_0),p10(x0,p11(a1(x3),x3))) | (21) |
p10(a0(x0),p00(x1,p00(x2,x3))) | → | p00(x1,p00(x0,p10(a0(x3),x3))) | (22) |
p10(a0(x0),p00(x1,p01(x2,x3))) | → | p00(x1,p00(x0,p11(a1(x3),x3))) | (23) |
p10(a0(x0),p00(x1,p10(x2,x3))) | → | p00(x1,p00(x0,p10(a0(x3),x3))) | (24) |
p10(a0(x0),p00(x1,p11(x2,x3))) | → | p00(x1,p00(x0,p11(a1(x3),x3))) | (25) |
p10(a0(x0),p10(x1,p00(x2,x3))) | → | p10(x1,p00(x0,p10(a0(x3),x3))) | (26) |
p10(a0(x0),p10(x1,p01(x2,x3))) | → | p10(x1,p00(x0,p11(a1(x3),x3))) | (27) |
p10(a0(x0),p10(x1,p10(x2,x3))) | → | p10(x1,p00(x0,p10(a0(x3),x3))) | (28) |
p10(a0(x0),p10(x1,p11(x2,x3))) | → | p10(x1,p00(x0,p11(a1(x3),x3))) | (29) |
p10(a1(x0),p00(x1,p00(x2,x3))) | → | p00(x1,p10(x0,p10(a0(x3),x3))) | (30) |
p10(a1(x0),p00(x1,p01(x2,x3))) | → | p00(x1,p10(x0,p11(a1(x3),x3))) | (31) |
p10(a1(x0),p00(x1,p10(x2,x3))) | → | p00(x1,p10(x0,p10(a0(x3),x3))) | (32) |
p10(a1(x0),p00(x1,p11(x2,x3))) | → | p00(x1,p10(x0,p11(a1(x3),x3))) | (33) |
p10(a1(x0),p10(x1,p00(x2,x3))) | → | p10(x1,p10(x0,p10(a0(x3),x3))) | (34) |
p10(a1(x0),p10(x1,p01(x2,x3))) | → | p10(x1,p10(x0,p11(a1(x3),x3))) | (35) |
p10(a1(x0),p10(x1,p10(x2,x3))) | → | p10(x1,p10(x0,p10(a0(x3),x3))) | (36) |
p10(a1(x0),p10(x1,p11(x2,x3))) | → | p10(x1,p10(x0,p11(a1(x3),x3))) | (37) |
The dependency pairs are split into 2 components.
p#10(a1(x0),p10(a1(y_0),p00(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (18) |
p#10(a1(x0),p10(a1(y_0),p10(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (20) |
[p#10(x1, x2)] | = | 1 · x1 + 1 · x2 |
[a1(x1)] | = | 1 + 1 · x1 |
[p10(x1, x2)] | = | 1 · x1 + 1 · x2 |
[p00(x1, x2)] | = | 1 · x2 |
[a0(x1)] | = | 0 |
[p01(x1, x2)] | = | 1 · x2 |
[p11(x1, x2)] | = | 1 · x2 |
p#10(a1(x0),p10(a1(y_0),p00(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (18) |
p#10(a1(x0),p10(a1(y_0),p10(x2,x3))) | → | p#10(a1(y_0),p10(x0,p10(a0(x3),x3))) | (20) |
There are no pairs anymore.
p#10(a1(x0),p10(a1(y_0),p11(x2,x3))) | → | p#10(a1(y_0),p10(x0,p11(a1(x3),x3))) | (21) |
[p#10(x1, x2)] | = | 1 · x1 + 1 · x2 |
[a1(x1)] | = | 1 + 1 · x1 |
[p10(x1, x2)] | = | 1 · x1 |
[p11(x1, x2)] | = | 1 · x1 |
p#10(a1(x0),p10(a1(y_0),p11(x2,x3))) | → | p#10(a1(y_0),p10(x0,p11(a1(x3),x3))) | (21) |
There are no pairs anymore.