The rewrite relation of the following TRS is considered.
There are 104 ruless (increase limit for explicit display).
P#(0,0,0,0) |
→ |
S#(0) |
(105) |
+#(x,S(y)) |
→ |
S#(+(x,y)) |
(106) |
+#(x,S(y)) |
→ |
+#(x,y) |
(107) |
a#(l(x)) |
→ |
l#(a(a(x))) |
(108) |
a#(l(x)) |
→ |
a#(a(x)) |
(109) |
a#(l(x)) |
→ |
a#(x) |
(110) |
l#(o(x)) |
→ |
o#(l(l(x))) |
(111) |
l#(o(x)) |
→ |
l#(l(x)) |
(112) |
l#(o(x)) |
→ |
l#(x) |
(113) |
o#(x) |
→ |
l#(x) |
(114) |
l#(x) |
→ |
a#(x) |
(115) |
a#(S(x)) |
→ |
S#(l(x)) |
(116) |
a#(S(x)) |
→ |
l#(x) |
(117) |
a#(+(x,y)) |
→ |
+#(l(x),y) |
(118) |
a#(+(x,y)) |
→ |
l#(x) |
(119) |
a#(+(x,y)) |
→ |
+#(x,l(y)) |
(120) |
a#(+(x,y)) |
→ |
l#(y) |
(121) |
a#(P(x1,x2,x3,x4)) |
→ |
P#(x1,x2,x3,l(x4)) |
(122) |
a#(P(x1,x2,x3,x4)) |
→ |
l#(x4) |
(123) |
a#(P(x1,x2,x3,x4)) |
→ |
P#(x1,x2,l(x3),x4) |
(124) |
a#(P(x1,x2,x3,x4)) |
→ |
l#(x3) |
(125) |
a#(P(x1,x2,x3,x4)) |
→ |
P#(x1,l(x2),x3,x4) |
(126) |
a#(P(x1,x2,x3,x4)) |
→ |
l#(x2) |
(127) |
a#(P(x1,x2,x3,x4)) |
→ |
P#(l(x1),x2,x3,x4) |
(128) |
a#(P(x1,x2,x3,x4)) |
→ |
l#(x1) |
(129) |
+#(x,o(y)) |
→ |
o#(+(x,y)) |
(130) |
+#(x,o(y)) |
→ |
+#(x,y) |
(131) |
P#(x1,x2,x3,o(x4)) |
→ |
o#(P(x1,x2,x3,x4)) |
(132) |
P#(x1,x2,x3,o(x4)) |
→ |
P#(x1,x2,x3,x4) |
(133) |
P#(x1,x2,o(x3),x4) |
→ |
o#(P(x1,x2,x3,x4)) |
(134) |
P#(x1,x2,o(x3),x4) |
→ |
P#(x1,x2,x3,x4) |
(135) |
P#(x1,o(x2),x3,x4) |
→ |
o#(P(x1,x2,x3,x4)) |
(136) |
P#(x1,o(x2),x3,x4) |
→ |
P#(x1,x2,x3,x4) |
(137) |
P#(o(x1),x2,x3,x4) |
→ |
o#(P(x1,x2,x3,x4)) |
(138) |
P#(o(x1),x2,x3,x4) |
→ |
P#(x1,x2,x3,x4) |
(139) |
M#(x1,x2,x3,l(y)) |
→ |
+#(M(x1,x2,x3,y),P(x1,x2,x3,y)) |
(140) |
M#(x1,x2,x3,l(y)) |
→ |
M#(x1,x2,x3,y) |
(141) |
M#(x1,x2,x3,l(y)) |
→ |
P#(x1,x2,x3,y) |
(142) |
J3#(x1,x2,l(x3),y) |
→ |
P#(x1,x2,J3(x1,x2,x3,y),0) |
(143) |
J3#(x1,x2,l(x3),y) |
→ |
J3#(x1,x2,x3,y) |
(144) |
J2#(x1,l(x2),y) |
→ |
P#(x1,J2(x1,x2,y),0,0) |
(145) |
J2#(x1,l(x2),y) |
→ |
J2#(x1,x2,y) |
(146) |
J1#(l(x1),y) |
→ |
P#(J1(x1,y),0,0,0) |
(147) |
J1#(l(x1),y) |
→ |
J1#(x1,y) |
(148) |
a#(S(x)) |
→ |
o#(x) |
(149) |
P#(0,0,0,S(y)) |
→ |
o#(M(0,0,0,y)) |
(150) |
P#(0,0,0,S(y)) |
→ |
M#(0,0,0,y) |
(151) |
P#(0,0,0,P(x1,x2,x3,y)) |
→ |
o#(M(x1,x2,x3,y)) |
(152) |
P#(0,0,0,P(x1,x2,x3,y)) |
→ |
M#(x1,x2,x3,y) |
(153) |
P#(x1,x2,S(x3),y) |
→ |
o#(J3(x1,x2,x3,y)) |
(154) |
P#(x1,x2,S(x3),y) |
→ |
J3#(x1,x2,x3,y) |
(155) |
P#(x1,S(x2),0,y) |
→ |
o#(J2(x1,x2,y)) |
(156) |
P#(x1,S(x2),0,y) |
→ |
J2#(x1,x2,y) |
(157) |
P#(S(x1),0,0,y) |
→ |
o#(J1(x1,y)) |
(158) |
P#(S(x1),0,0,y) |
→ |
J1#(x1,y) |
(159) |
P#(x1,x2,S(x3),S(y)) |
→ |
o#(J3(x1,x2,x3,P(x1,x2,S(x3),y))) |
(160) |
P#(x1,x2,S(x3),S(y)) |
→ |
J3#(x1,x2,x3,P(x1,x2,S(x3),y)) |
(161) |
P#(x1,x2,S(x3),S(y)) |
→ |
P#(x1,x2,S(x3),y) |
(162) |
P#(x1,S(x2),0,S(y)) |
→ |
o#(J2(x1,x2,P(x1,S(x2),0,y))) |
(163) |
P#(x1,S(x2),0,S(y)) |
→ |
J2#(x1,x2,P(x1,S(x2),0,y)) |
(164) |
P#(x1,S(x2),0,S(y)) |
→ |
P#(x1,S(x2),0,y) |
(165) |
P#(S(x1),0,0,S(y)) |
→ |
o#(J1(x1,P(S(x1),0,0,y))) |
(166) |
P#(S(x1),0,0,S(y)) |
→ |
J1#(x1,P(S(x1),0,0,y)) |
(167) |
P#(S(x1),0,0,S(y)) |
→ |
P#(S(x1),0,0,y) |
(168) |
a#(P(x1,x2,x3,0)) |
→ |
Q33#(x1,x2,a(x3),x3) |
(169) |
a#(P(x1,x2,x3,0)) |
→ |
a#(x3) |
(170) |
a#(P(x1,x2,x3,0)) |
→ |
Q32#(x1,x2,a(x3),x2) |
(171) |
a#(P(x1,x2,x3,0)) |
→ |
Q31#(x1,x2,a(x3),x1) |
(172) |
a#(P(x1,x2,0,0)) |
→ |
Q22#(x1,a(x2),x2) |
(173) |
a#(P(x1,x2,0,0)) |
→ |
a#(x2) |
(174) |
a#(P(x1,x2,0,0)) |
→ |
Q21#(x1,a(x2),x1) |
(175) |
a#(P(x1,0,0,0)) |
→ |
Q11#(a(x1),x1) |
(176) |
a#(P(x1,0,0,0)) |
→ |
a#(x1) |
(177) |
Q33#(x1,x2,o(x3),y) |
→ |
o#(P(x1,x2,x3,y)) |
(178) |
Q33#(x1,x2,o(x3),y) |
→ |
P#(x1,x2,x3,y) |
(179) |
Q32#(x1,x2,o(x3),y) |
→ |
o#(P(x1,x2,x3,y)) |
(180) |
Q32#(x1,x2,o(x3),y) |
→ |
P#(x1,x2,x3,y) |
(181) |
Q31#(x1,x2,o(x3),y) |
→ |
o#(P(x1,x2,x3,y)) |
(182) |
Q31#(x1,x2,o(x3),y) |
→ |
P#(x1,x2,x3,y) |
(183) |
Q22#(x1,o(x2),y) |
→ |
o#(P(x1,x2,0,y)) |
(184) |
Q22#(x1,o(x2),y) |
→ |
P#(x1,x2,0,y) |
(185) |
Q21#(x1,o(x2),y) |
→ |
o#(P(x1,x2,0,y)) |
(186) |
Q21#(x1,o(x2),y) |
→ |
P#(x1,x2,0,y) |
(187) |
Q11#(o(x1),y) |
→ |
o#(P(x1,0,0,y)) |
(188) |
Q11#(o(x1),y) |
→ |
P#(x1,0,0,y) |
(189) |
a#(P(x1,x2,x3,S(y))) |
→ |
R3#(x1,x2,a(x3),x3,y) |
(190) |
a#(P(x1,x2,x3,S(y))) |
→ |
a#(x3) |
(191) |
a#(P(x1,x2,0,S(y))) |
→ |
R2#(x1,a(x2),x2,y) |
(192) |
a#(P(x1,x2,0,S(y))) |
→ |
a#(x2) |
(193) |
a#(P(x1,0,0,S(y))) |
→ |
R1#(a(x1),x1,y) |
(194) |
a#(P(x1,0,0,S(y))) |
→ |
a#(x1) |
(195) |
R3#(x1,x2,o(x3),y,z) |
→ |
o#(P(x1,x2,x3,P(x1,x2,y,z))) |
(196) |
R3#(x1,x2,o(x3),y,z) |
→ |
P#(x1,x2,x3,P(x1,x2,y,z)) |
(197) |
R3#(x1,x2,o(x3),y,z) |
→ |
P#(x1,x2,y,z) |
(198) |
R2#(x1,o(x2),y,z) |
→ |
o#(P(x1,x2,0,P(x1,y,0,z))) |
(199) |
R2#(x1,o(x2),y,z) |
→ |
P#(x1,x2,0,P(x1,y,0,z)) |
(200) |
R2#(x1,o(x2),y,z) |
→ |
P#(x1,y,0,z) |
(201) |
R1#(o(x1),y,z) |
→ |
o#(P(x1,0,0,P(y,0,0,z))) |
(202) |
R1#(o(x1),y,z) |
→ |
P#(x1,0,0,P(y,0,0,z)) |
(203) |
R1#(o(x1),y,z) |
→ |
P#(y,0,0,z) |
(204) |
It remains to prove infiniteness of the resulting DP problem.
t0
|
= |
J3#(x1'',S(l(x3'')),l(x3''),0) |
|
→P
|
P#(x1'',S(l(x3'')),J3(x1'',S(l(x3'')),x3'',0),0) |
|
→R
|
P#(x1'',S(l(x3'')),S(l(x3'')),0) |
|
→P
|
J3#(x1'',S(l(x3'')),l(x3''),0) |
|
= |
t3
|
where t