The rewrite relation of the following TRS is considered.
| s(s(0)) | → | f(s(0)) | (1) |
| g(x) | → | h(x,x) | (2) |
| s(x) | → | h(x,0) | (3) |
| s(x) | → | h(0,x) | (4) |
| f(g(x)) | → | g(g(f(x))) | (5) |
| g(s(x)) | → | s(s(g(x))) | (6) |
| h(f(x),g(x)) | → | f(s(x)) | (7) |
| s(0) | → | k(0) | (8) |
| s(k(0)) | → | 0 | (9) |
| s(s(0)) | → | k(s(0)) | (10) |
| k(s(0)) | → | 0 | (11) |
| s(s(s(s(s(s(s(0))))))) | → | k(s(s(0))) | (12) |
| k(s(s(0))) | → | s(s(s(s(s(0))))) | (13) |
| h(k(x),g(x)) | → | k(s(x)) | (14) |
| s#(s(0)) | → | f#(s(0)) | (15) |
| g#(x) | → | h#(x,x) | (16) |
| s#(x) | → | h#(x,0) | (17) |
| s#(x) | → | h#(0,x) | (18) |
| f#(g(x)) | → | g#(g(f(x))) | (19) |
| f#(g(x)) | → | g#(f(x)) | (20) |
| f#(g(x)) | → | f#(x) | (21) |
| g#(s(x)) | → | s#(s(g(x))) | (22) |
| g#(s(x)) | → | s#(g(x)) | (23) |
| g#(s(x)) | → | g#(x) | (24) |
| h#(f(x),g(x)) | → | f#(s(x)) | (25) |
| h#(f(x),g(x)) | → | s#(x) | (26) |
| s#(0) | → | k#(0) | (27) |
| s#(s(0)) | → | k#(s(0)) | (28) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(s(s(s(0))))) | (30) |
| k#(s(s(0))) | → | s#(s(s(s(0)))) | (31) |
| k#(s(s(0))) | → | s#(s(s(0))) | (32) |
| h#(k(x),g(x)) | → | k#(s(x)) | (33) |
| h#(k(x),g(x)) | → | s#(x) | (34) |
The dependency pairs are split into 1 component.
| f#(g(x)) | → | g#(g(f(x))) | (19) |
| g#(x) | → | h#(x,x) | (16) |
| h#(f(x),g(x)) | → | f#(s(x)) | (25) |
| f#(g(x)) | → | g#(f(x)) | (20) |
| g#(s(x)) | → | s#(s(g(x))) | (22) |
| s#(s(0)) | → | f#(s(0)) | (15) |
| f#(g(x)) | → | f#(x) | (21) |
| s#(s(0)) | → | k#(s(0)) | (28) |
| k#(s(s(0))) | → | s#(s(s(s(s(0))))) | (30) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(s(s(0)))) | (31) |
| k#(s(s(0))) | → | s#(s(s(0))) | (32) |
| g#(s(x)) | → | s#(g(x)) | (23) |
| g#(s(x)) | → | g#(x) | (24) |
| h#(f(x),g(x)) | → | s#(x) | (26) |
| h#(k(x),g(x)) | → | k#(s(x)) | (33) |
| h#(k(x),g(x)) | → | s#(x) | (34) |
| [f#(x1)] | = | -2 + 2 · x1 |
| [g#(x1)] | = | 2 |
| [k#(x1)] | = | 2 |
| [s#(x1)] | = | 2 |
| [f(x1)] | = | 2 · x1 |
| [g(x1)] | = | 2 + x1 |
| [h(x1, x2)] | = | -2 |
| [s(x1)] | = | 0 |
| [k(x1)] | = | 0 |
| [0] | = | 0 |
| [h#(x1, x2)] | = | 2 |
| h#(f(x),g(x)) | → | f#(s(x)) | (25) |
| s#(s(0)) | → | f#(s(0)) | (15) |
| f#(g(x)) | → | f#(x) | (21) |
The dependency pairs are split into 2 components.
| g#(s(x)) | → | g#(x) | (24) |
| [s(x1)] | = | 1 · x1 |
| [g#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| g#(s(x)) | → | g#(x) | (24) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| k#(s(s(0))) | → | s#(s(s(s(s(0))))) | (30) |
| s#(s(0)) | → | k#(s(0)) | (28) |
| k#(s(s(0))) | → | s#(s(s(s(0)))) | (31) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(s(0))) | (32) |
| [k#(x1)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [0] | = |
|
|||||||||||||||||||
| [s#(x1)] | = |
|
|||||||||||||||||||
| [h(x1, x2)] | = |
|
|||||||||||||||||||
| [k(x1)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [g(x1)] | = |
|
| s#(s(0)) | → | k#(s(0)) | (28) |
| k#(s(s(0))) | → | s#(h(s(s(s(0))),0)) | (35) |
| k#(s(s(0))) | → | s#(h(0,s(s(s(0))))) | (36) |
| k#(s(s(0))) | → | s#(s(h(s(s(0)),0))) | (37) |
| k#(s(s(0))) | → | s#(s(h(0,s(s(0))))) | (38) |
| k#(s(s(0))) | → | s#(s(s(f(s(0))))) | (39) |
| k#(s(s(0))) | → | s#(s(s(h(s(0),0)))) | (40) |
| k#(s(s(0))) | → | s#(s(s(h(0,s(0))))) | (41) |
| k#(s(s(0))) | → | s#(s(s(k(s(0))))) | (42) |
| k#(s(s(0))) | → | s#(s(s(s(h(0,0))))) | (43) |
| k#(s(s(0))) | → | s#(s(s(s(k(0))))) | (44) |
The dependency pairs are split into 1 component.
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(s(s(0)))) | (31) |
| k#(s(s(0))) | → | s#(s(s(0))) | (32) |
| k#(s(s(0))) | → | s#(s(h(s(s(0)),0))) | (37) |
| k#(s(s(0))) | → | s#(s(h(0,s(s(0))))) | (38) |
| k#(s(s(0))) | → | s#(s(s(f(s(0))))) | (39) |
| k#(s(s(0))) | → | s#(s(s(h(s(0),0)))) | (40) |
| k#(s(s(0))) | → | s#(s(s(h(0,s(0))))) | (41) |
| k#(s(s(0))) | → | s#(s(s(k(s(0))))) | (42) |
| k#(s(s(0))) | → | s#(s(s(s(h(0,0))))) | (43) |
| k#(s(s(0))) | → | s#(s(s(s(k(0))))) | (44) |
| k#(s(s(0))) | → | s#(h(s(s(0)),0)) | (45) |
| k#(s(s(0))) | → | s#(h(0,s(s(0)))) | (46) |
| k#(s(s(0))) | → | s#(s(f(s(0)))) | (47) |
| k#(s(s(0))) | → | s#(s(h(s(0),0))) | (48) |
| k#(s(s(0))) | → | s#(s(h(0,s(0)))) | (49) |
| k#(s(s(0))) | → | s#(s(k(s(0)))) | (50) |
| k#(s(s(0))) | → | s#(s(s(h(0,0)))) | (51) |
| k#(s(s(0))) | → | s#(s(s(k(0)))) | (52) |
The dependency pairs are split into 1 component.
| k#(s(s(0))) | → | s#(s(s(0))) | (32) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(h(s(s(0)),0))) | (37) |
| k#(s(s(0))) | → | s#(s(h(0,s(s(0))))) | (38) |
| k#(s(s(0))) | → | s#(s(s(f(s(0))))) | (39) |
| k#(s(s(0))) | → | s#(s(s(h(s(0),0)))) | (40) |
| k#(s(s(0))) | → | s#(s(s(h(0,s(0))))) | (41) |
| k#(s(s(0))) | → | s#(s(s(k(s(0))))) | (42) |
| k#(s(s(0))) | → | s#(s(s(s(h(0,0))))) | (43) |
| k#(s(s(0))) | → | s#(s(s(s(k(0))))) | (44) |
| k#(s(s(0))) | → | s#(s(f(s(0)))) | (47) |
| k#(s(s(0))) | → | s#(s(h(s(0),0))) | (48) |
| k#(s(s(0))) | → | s#(s(h(0,s(0)))) | (49) |
| k#(s(s(0))) | → | s#(s(k(s(0)))) | (50) |
| k#(s(s(0))) | → | s#(s(s(h(0,0)))) | (51) |
| k#(s(s(0))) | → | s#(s(s(k(0)))) | (52) |
| k#(s(s(0))) | → | s#(f(s(0))) | (53) |
| k#(s(s(0))) | → | s#(h(s(0),0)) | (54) |
| k#(s(s(0))) | → | s#(h(0,s(0))) | (55) |
| k#(s(s(0))) | → | s#(k(s(0))) | (56) |
| k#(s(s(0))) | → | s#(s(h(0,0))) | (57) |
| k#(s(s(0))) | → | s#(s(k(0))) | (58) |
The dependency pairs are split into 1 component.
| k#(s(s(0))) | → | s#(s(h(s(s(0)),0))) | (37) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(h(0,s(s(0))))) | (38) |
| k#(s(s(0))) | → | s#(s(s(f(s(0))))) | (39) |
| k#(s(s(0))) | → | s#(s(s(h(s(0),0)))) | (40) |
| k#(s(s(0))) | → | s#(s(s(h(0,s(0))))) | (41) |
| k#(s(s(0))) | → | s#(s(s(k(s(0))))) | (42) |
| k#(s(s(0))) | → | s#(s(s(s(h(0,0))))) | (43) |
| k#(s(s(0))) | → | s#(s(s(s(k(0))))) | (44) |
| k#(s(s(0))) | → | s#(s(f(s(0)))) | (47) |
| k#(s(s(0))) | → | s#(s(h(s(0),0))) | (48) |
| k#(s(s(0))) | → | s#(s(h(0,s(0)))) | (49) |
| k#(s(s(0))) | → | s#(s(k(s(0)))) | (50) |
| k#(s(s(0))) | → | s#(s(s(h(0,0)))) | (51) |
| k#(s(s(0))) | → | s#(s(s(k(0)))) | (52) |
| k#(s(s(0))) | → | s#(f(s(0))) | (53) |
| k#(s(s(0))) | → | s#(k(s(0))) | (56) |
| k#(s(s(0))) | → | s#(s(h(0,0))) | (57) |
| k#(s(s(0))) | → | s#(s(k(0))) | (58) |
| [k#(x1)] | = | 2 |
| [s#(x1)] | = | 1 + x1 |
| [s(x1)] | = | 1 |
| [h(x1, x2)] | = | 1 |
| [0] | = | 0 |
| [k(x1)] | = | 1 |
| [f(x1)] | = | -2 + 2 · x1 |
| [g(x1)] | = | 2 |
| k#(s(s(0))) | → | s#(f(s(0))) | (53) |
| [k#(x1)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [0] | = |
|
|||||||||||||||||||
| [s#(x1)] | = |
|
|||||||||||||||||||
| [h(x1, x2)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [k(x1)] | = |
|
|||||||||||||||||||
| [g(x1)] | = |
|
| k#(s(s(0))) | → | s#(s(k(0))) | (58) |
| [k#(x1)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [0] | = |
|
|||||||||||||||||||
| [s#(x1)] | = |
|
|||||||||||||||||||
| [h(x1, x2)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [k(x1)] | = |
|
|||||||||||||||||||
| [g(x1)] | = |
|
| k#(s(s(0))) | → | s#(k(s(0))) | (56) |
| [k#(x1)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [0] | = |
|
|||||||||||||||||||
| [s#(x1)] | = |
|
|||||||||||||||||||
| [h(x1, x2)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [k(x1)] | = |
|
|||||||||||||||||||
| [g(x1)] | = |
|
| k#(s(s(0))) | → | s#(s(h(s(s(0)),0))) | (37) |
| s#(s(s(s(s(s(s(0))))))) | → | k#(s(s(0))) | (29) |
| k#(s(s(0))) | → | s#(s(h(0,s(s(0))))) | (38) |
| k#(s(s(0))) | → | s#(s(s(f(s(0))))) | (39) |
| k#(s(s(0))) | → | s#(s(s(h(s(0),0)))) | (40) |
| k#(s(s(0))) | → | s#(s(s(k(s(0))))) | (42) |
| k#(s(s(0))) | → | s#(s(s(s(h(0,0))))) | (43) |
| k#(s(s(0))) | → | s#(s(s(s(k(0))))) | (44) |
| k#(s(s(0))) | → | s#(s(f(s(0)))) | (47) |
| k#(s(s(0))) | → | s#(s(h(s(0),0))) | (48) |
| k#(s(s(0))) | → | s#(s(h(0,s(0)))) | (49) |
| k#(s(s(0))) | → | s#(s(k(s(0)))) | (50) |
| k#(s(s(0))) | → | s#(s(s(h(0,0)))) | (51) |
| k#(s(s(0))) | → | s#(s(s(k(0)))) | (52) |
| k#(s(s(0))) | → | s#(s(h(0,0))) | (57) |
There are no rules.
There are no pairs anymore.