Certification Problem

Input (TPDB TRS_Standard/SK90/2.29)

The rewrite relation of the following TRS is considered.

prime(0) false (1)
prime(s(0)) false (2)
prime(s(s(x))) prime1(s(s(x)),s(x)) (3)
prime1(x,0) false (4)
prime1(x,s(0)) true (5)
prime1(x,s(s(y))) and(not(divp(s(s(y)),x)),prime1(x,s(y))) (6)
divp(x,y) =(rem(x,y),0) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(prime) = 6 stat(prime) = mul
prec(0) = 1 stat(0) = mul
prec(false) = 5 stat(false) = mul
prec(s) = 2 stat(s) = lex
prec(prime1) = 5 stat(prime1) = lex
prec(true) = 5 stat(true) = mul
prec(and) = 3 stat(and) = lex
prec(divp) = 4 stat(divp) = mul
prec(=) = 0 stat(=) = lex
prec(rem) = 0 stat(rem) = lex

π(prime) = [1]
π(0) = []
π(false) = []
π(s) = [1]
π(prime1) = [1,2]
π(true) = []
π(and) = [1,2]
π(not) = 1
π(divp) = [1,2]
π(=) = [1,2]
π(rem) = [1,2]

all of the following rules can be deleted.
prime(0) false (1)
prime(s(0)) false (2)
prime(s(s(x))) prime1(s(s(x)),s(x)) (3)
prime1(x,0) false (4)
prime1(x,s(0)) true (5)
prime1(x,s(s(y))) and(not(divp(s(s(y)),x)),prime1(x,s(y))) (6)
divp(x,y) =(rem(x,y),0) (7)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.