The rewrite relation of the following TRS is considered.
| f(b(a,z)) | → | z | (1) |
| b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
| f(f(f(c(z,x,a)))) | → | b(f(x),z) | (3) |
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (4) |
| b#(y,b(a,z)) | → | f#(c(y,y,a)) | (5) |
| b#(y,b(a,z)) | → | b#(f(z),a) | (6) |
| b#(y,b(a,z)) | → | f#(z) | (7) |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (8) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (9) |
The dependency pairs are split into 1 component.
| b#(y,b(a,z)) | → | f#(z) | (7) |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (8) |
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (4) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (9) |
| prec(c) | = | 1 | weight(c) | = | 1 | ||||
| prec(a) | = | 0 | weight(a) | = | 1 |
| π(b#) | = | 2 |
| π(b) | = | 2 |
| π(f#) | = | 1 |
| π(f) | = | 1 |
| π(c) | = | [1,2] |
| π(a) | = | [] |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (8) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (9) |
The dependency pairs are split into 1 component.
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (4) |
| [b#(x1, x2)] | = |
|
||||||||||||||||||||||||||
| [b(x1, x2)] | = |
|
||||||||||||||||||||||||||
| [a] | = |
|
||||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||||
| [c(x1, x2, x3)] | = |
|
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (4) |
There are no pairs anymore.